Angelman Syndrome Brain Budz

Mary Augustine, Piper Doering, Kristie Trinh, and Colin Twyman

Significance

Historical Background

William's Syndrome

Down Syndrome

Symptoms and Neuroanatomy

- Seizures
- Stiff or jerky movements
- Tongue thrusting
- Difficulty walking
- Inability to balance
- Hand flapping

AMPA Receptors

55 Angstroms

Internalization of AMPA Receptor

- Higher amount of Arc Protein in Angelman Syndrome
- Arc Protein is mediated by Ube3a
- Lower expression of AMPA receptor on synaptic membrane

Arc Protein

https://openi.nlm.nih.gov/detailedresult.php?img=PMC2803749_221_2009_1959_Fig2_HTML&req=4

Ubiquitin 3 Ligase

- Catalyze proteins during ubiquitination
- Neuronal activity regulated
 protein
- Controls synaptic function
- Regulates AMPA receptor internalization

http://pawsonlab.mshri.on.ca/index.html

Genetic Causes

Genetic Causes (cont.)

- 5 chromosomal variants lead to Angelman syndrome
- Majority of cases there are no inheritance patterns
 - Occurs in meiosis and early development
- Translocation occurs in rare cases, leading to UBE3A inactivation or lack of TF required for its activation

Class	Chromosome/genetic abnormality	~%
I	15q11-13 deletion	70
II	UPD (Uniparental disomy)	5
III	ID (Imprinting defect)	5
IV	UBE3A mutation	10
v	Unknown	10

15q12

Source: University of Florida Department of Pediatrics Division of Genetics and Metabolism

Loss of OCA2 gene leads to distinct phenotypic changes

UBE3A - encoded in 15q12

UBE3A Regulates SK2 Channel Endocytosis

- SK channels are critical for learning, memory, rhythmic activity, and sleep
- Therefore, UBE3A regulates learning and memory by controlling SK2 channel endocytosis

Source: Jiandong et al., 2015

GABA_A Receptor - encoded in 15q12

GABA_A Receptor

 β 3- α 5- γ 3 GABA_A receptor subunit gene cluster is located in 15q11q13 region and can be deleted along with UBE3A

GAT1

- GAT1 removes GABA from synaptic cleft
- UBE3A targets GAT1 for degradation and recycling
- Without UBE3A, there is an increase of GAT1, which leads to GABA deficiency

Williams Syndrome

- Deletion of tropoelastin (ELN) leads to cardiovascular problems
- GTF2IRD1 regulates gene expression in the brain and skeletal muscles
- LIMK1 regulates neuronal development

Treatments

Drugs: Mainly focuses on treating epilepsy related symptoms

Communication Therapy: Early intervention is critical and focuses on visual aides

Clinical Trials: Restoring GABA_A Receptor Activity

OV101 - gaboxadol

- Extrasynaptic δ selective GABA_A receptor agonist
- Still recruiting, in Phase II

Source: Foundation for Angelman Syndrome Therapeutics

Clinical Trials: Restoring Synaptic Development

Minocycline: antibiotic being tested to restore synaptic dysfunction

Source: Miller and Phillips (2015)

Mmp9: enzyme that degrades the extracellular matrix of cells. Believed to be involved in synaptic plasticity

Source: STITCH Database

Clinical Trials: Unsilencing the Paternal UBE3A

Gene Topotecan: topoisomerase inhibitor that results in increased levels of paternal UBE3A levels

References

- 1. Berent, A. (2016, January 22). Ovid Therapeutics OV101 as a potential therapeutic | FAST. Retrieved from https://cureangelman.org/ovid-therapeutics-ov101-as-a-potential-therapeutic
- 2. Lalande, M., and Calciano, M. (2007). Molecular epigenetics of Angelman syndrome. Cellular And Molecular Life Sciences *64*, 947-960. Doi: 10.1007/s00018-007-6460-0
- 3. Lizarraga, S., and Morrow, E. (2015). Uncovering a Role for SK2 in Angelman Syndrome. Cell Reports 12, 359-360. Doi: Doi: doi.org/10.1016/j.celrep.2015.07.009
- 4. Grieco, J. C., Ciarlone, S. L., et. al (2014). An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. *BMC Neurology*, *14*, 232. http://doi.org/10.1186/s12883-014-0232-x
- 5. Huang, H.-S., Allen, J. A., Mabb, et. al, (2012). Topoisomerase inhibitors unsilence the dormant allele of *Ube3a* in neurons. *Nature*, *481*(7380), 185–189. http://doi.org/10.1038/nature10726
- 6. Sell, G., and Margolis, S. (2015). From UBE3A to Angelman syndrome: a substrate perspective. Frontiers In Neuroscience 9. Doi: doi.org/10.3389/fnins.2015.00322
- Sun, J., Zhu, G., Liu, Y., Standley, S., Ji, A., Tunuguntla, R., Wang, Y., Claus, C., Luo, Y., and Baudry, M. et al. (2015). UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis. Cell Reports 12, 449-461. Doi: doi.org/10.1016/j.celrep.2015.06.023