Understanding Dystonia

Sand Sharks

Anthony Richardson, Lindsey Rathbun, Evan Harrington, Chris Erzen
The Essentials

What, Why, How
What is **Dystonia**?

Dystonias are *movement disorders* often characterized by persistent (or intermittent) muscle contractions, often worsened by voluntary movements.

→ Affect men, women, and children of all ages and background
→ Can be associated with a wide variety of other neurological conditions

Several different forms:
→ All forms share same repetitive, patterned, and often twisting involuntary muscle contractions
→ Chronic but most do not have any effect on cognition or overall lifespan
Why Dystonia is relevant

➔ More than 200,000 people live with Dystonia
➔ Affects people of all ages
➔ Cause unknown; no known cure

Can affect every single individual
➔ Wildly unpredictable nature makes the disorder a detriment to the quality of life for afflicted individuals
Dystonia in Motion
Types of **Dystonia** - What are they?

It depends on how you classify them.

→ How many body parts are affected?
 - Generalized - most or all of the body
 - Focal - one specific body part
 - Multifocal - two or more unrelated body parts
 - Segmental - two adjacent body parts
 - Hemidystonia - arm and leg on one, same side of the body

→ What about different forms of focal dystonia?
Cervical Dystonia

- **Most common variant**
- Muscles in the neck pull to one side
- Can occur at any age
 - Most common in middle age
- 10% have spontaneous remission
Blepharospasm

- Involuntary, forcible contraction of muscles controlling eye blink
- Increased or excessive blinking is early symptom
- May result in “functional blindness”
 - Eyes are stuck shut although eyeballs are healthy
Cranio-Facial Dystonia

→ Head, face, and neck
- Cranio-Facial Dystonia + Blepharospasm = Meige syndrome
- Oromandibular Dystonia = jaw, lips, tongue
- Spasmodic Dysphonia = larynx
Task-Specific Dystonia

→ Occur when undertaking a particular repetitive activity
 - Writer’s cramp
 - Typist’s cramp
 - Pianist’s cramp
 - Musician’s Dystonia
 - Not only hands, but also mouth, lips, and voice
Breaking It Down

TL; DR: It’s more complicated than we know.
What causes **Dystonia**?

We don’t know.

But **maybe** it has something to do with abnormality or damage to basal ganglia, etc. in controlling movement.

➔ Neurotransmitter problem?
➔ Problems with brain’s generation of movement commands?

The kicker? **We often can’t see it with MRI.**

Not that we are aware, anyway.
What can we say about its origin?

→ **Idiopathic dystonia**
 ◆ No clear cause
 ◆ Vast majority of cases

→ **Genetic**
 ◆ Some dominant inheritance
 ◆ Can vary in severity and presentation
 ◆ One mutated gene is sufficient to cause symptoms

→ **Acquired dystonia**
 ◆ CNS/PNS damage; Trauma or Stroke
 ◆ Possible consequence of medication
 ◆ Birth injury (i.e. hypoxia or hemorrhage)
 ◆ Infection
 ◆ Toxins
 ◆ Often plateaus; does not spread
<table>
<thead>
<tr>
<th>Axis I: clinical characteristics</th>
<th>Axis II: etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset</td>
<td></td>
</tr>
<tr>
<td>Infancy (0-2 years)</td>
<td>Degenerative</td>
</tr>
<tr>
<td>Childhood (3-12 years)</td>
<td>Structural lesion</td>
</tr>
<tr>
<td>Adolescence (13-20 years)</td>
<td>No degeneration/structural lesion</td>
</tr>
<tr>
<td>Early adulthood (21-40 years)</td>
<td></td>
</tr>
<tr>
<td>Late adulthood (>40 years)</td>
<td>Inheritance pattern</td>
</tr>
<tr>
<td>Body distribution</td>
<td></td>
</tr>
<tr>
<td>Focal</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>Segmental</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>Multifocal</td>
<td>X-linked recessive</td>
</tr>
<tr>
<td>Generalized</td>
<td>Mitochondrial</td>
</tr>
<tr>
<td>Hemidystonia</td>
<td>Acquired cause</td>
</tr>
<tr>
<td>Temporal pattern</td>
<td></td>
</tr>
<tr>
<td>Disease course</td>
<td>Infection</td>
</tr>
<tr>
<td>Static</td>
<td>Drug</td>
</tr>
<tr>
<td>Progressive</td>
<td>Toxic</td>
</tr>
<tr>
<td>Variability</td>
<td>Vascular</td>
</tr>
<tr>
<td>Persistent</td>
<td>Neoplastic</td>
</tr>
<tr>
<td>Action-specific</td>
<td>Brain injury</td>
</tr>
<tr>
<td>Diurnal</td>
<td>Psychogenic</td>
</tr>
<tr>
<td>Paroxysmal</td>
<td>Idiopathic</td>
</tr>
<tr>
<td>Associated features</td>
<td>Familial</td>
</tr>
<tr>
<td>Isolated</td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td></td>
</tr>
<tr>
<td>Co-occurring manifestations</td>
<td></td>
</tr>
</tbody>
</table>
Genetic Predisposition

DYT1 mutation
- Dominant inheritance
- Begins in childhood
- Affects limbs and then progresses to cause significant disability
- Some carriers may not develop symptoms of dystonia

Recent diagnoses
- DYT6 mutation
 - Multiple forms present
- DYT3 mutation
 - Parkinsonism
- DYT11 mutation
 - Myoclonus - brief muscle contractions
- DYT12
 - Rapid onset, parkinsonism
Genetic Dystonia: DYT1 Mutation

DYT1 Mutation

- **TOR1A**
 - 3 base GAG (E) deletion on Exon 5
- 30-40% penetrance
- Dominant inheritance
- Early onset generalized dystonia in lower distal extremities
- Progressively worsens in severity and affected areas

TorsinA-ULL1 complex
GYT1 Mutation lowers TorsinA binding affinity for LULL1

→ TorsinA protein expressed in substantia nigra
→ Chaperone
→ ATPase activity with LULL1 and LAPP1
→ GYT1 Glu deletion reduces binding with LULL1 protein
Genetic Dystonia: Other Examples

➔ **GYT6: THAP1 mutation**
 - Mutations reduce stability and gene regulation ability
 - Penetrance varies with variant

➔ **DYT3: Reduced TAF1 expression**
 - Transcription initiation factor
Dystonia Cause Takeaways

➔ Vast Majority of cases are idiopathic
 ◆ Less than 1% have genetic link
➔ Rarer Familial forms with a genetic cause
➔ Affected genes are involved in a large variety of biological activities
➔ Mutations have a large variance in penetrance
“There are no medications to prevent dystonia or slow its progression.”
Fixing It

Stop the abnormal movements at one or multiple levels of the nervous system.
Medication

→ **Anticholinergic agents**
 ◆ Trihexyphenidyl, benztropine
 ◆ Block acetylcholine

→ **GABAergic agents**
 ◆ Regulate neurotransmitter GABA
 ◆ Benzodiazepines
 ● Diazepam, lorazepam, clonazepam, baclofen

→ **Dopaminergic agents**
 ◆ Act on the dopamine system
 ◆ Tetrabenazine
 ● Can cause weight gain and involuntary, repetitive muscle movements
 ◆ Levodopa can manage Dopa-Responsive Dystonia
Medication (cont’d)

➔ Botulinum Toxin
 ◆ Prevents muscle spasms in muscle when injected directly
 ◆ Often used in combination with other forms of treatment, including physical therapy
Drugs: Mechanisms of Action

- **Anticholinergic agents - trihexyphenidyl**
 - M1 muscarinic acetylcholine receptor agonist
 - Partial block to cholinergic activity in CNS - initially indicated for Parkinson’s

- **GABAergic agents - diazepam**
 - Binds to benzodiazepine receptors, mediating muscle relaxation and anticonvulsion, coupled (supposedly) to GABAa receptors
 - Enhances effects of GABA via increased binding affinity
 - GABA opens Cl- channel, resulting in “over-hyperpolarization”
Dopaminergic agents - tetrabenazine
◆ Reversible vesicular monoamine transporter type 2 inhibitor
◆ Acts within basal ganglia and promotes depletion of serotonin, norepinephrine, and dopamine; decreases uptake
◆ Keep in mind: dopamine is required for fine motor movement

Levodopa - Dopa-Responsive Dystonia
◆ Supplementation of dopamine through administration of precursor levodopa, compensating for low dopamine levels by exogenous introduction of dopamine to the brain
Serotype A Mechanism of Action
- Cleaves SNAP-25 at carboxyl terminus
- Blocks acetylcholine from vesicle fusion
- Acetylcholine inhibition restored after SNARE protein complex turnover
Evidence implicating the basal ganglia in dystonia is largely attributed to old studies prior to the 2000s that used CT or MRI imaging. However, studies have been continued in recent years with PET studies of regional metabolic activity.

Lesions in the cerebellum or its pathways through the brainstem have also been indicated in some forms of dystonia. In some cases, removal of the posterior fossa lesions causes preeminent cervical dystonia to remit.

There have also been studies linking limb dystonias with focal lesions of the thalamus.

Inconsistencies are linked to different types of dystonia.
Deep Brain Stimulation

- Implantation of electrodes into movement-controlling brain regions
- Blocks electrical signals causing symptoms
- Conducted by an interdisciplinary team of physicians
- Intensive follow-up to adjust and optimize DBS settings
DBS in Everyday Life
Surgery and Physical Therapy

➔ **Thalamotomy** - intentional damage to small regions of the thalamus

➔ **Pallidotomy** *(globus pallidus)*

➔ **Anterior Cervical Rhizotomy** - Severance of nerves deep in the neck near the spinal cord

➔ **Selective Peripheral Denervation** - Removal of nerves at muscle
Treatment for **Musician’s Dystonia**
Clinical Trials

Dysport versus Botox:

➔ Patients were given either Dysport® (abobotulinumtoxinA) or Botox® (onabotulinumtoxinA)
➔ Measured TSUI (impairment scale) of cervical dystonia patients at baseline and after 4 weeks of treatment of drugs
➔ Reported lower TSUI measurements on Botox

<table>
<thead>
<tr>
<th>Participants Analyzed</th>
<th>Dysport® (abobotulinumtoxinA)</th>
<th>Botox® (onabobotulinumtoxinA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Units: Participants]</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Reduction of Total Tsui Score at 4 Weeks From Baseline</td>
<td>-3.98 (3.89)</td>
<td>-4.77 (4.10)</td>
</tr>
</tbody>
</table>
“Incobotulinum Toxin A (Xeomin®) As A Treatment For Focal Task-Specific Dystonia Of The Musician’s Hand”

➔ Frown Line Treatment
➔ Botulinum toxin (BoNT) prevents muscle contraction by blocking ACh release
➔ EMG or Ultrasound used to locate individual muscle(s) affected in focal dystonia
➔ More accurately relax overactive muscles

“I choose Xeomin because it is highly purified, FDA approved, and clinically proven to temporarily smooth frown lines. I just love it!”

Christie Brinkley
AGE 63
Actual XEOMIN® Patient
Dystonia: Main Takeaways

➔ Dystonia is a group of disorders that affects more than 200,000 people
➔ Only symptoms treated
➔ Many different causes/explanations
 ◆ None are fully understood
 ● Genetic
 ○ Low penetrance
 ○ Low correlation
 ● Anatomical
 ○ Multiple brain regions
 ○ Suggest motor system disorder
 ◆ Comorbid with other neurological diseases
End
References

