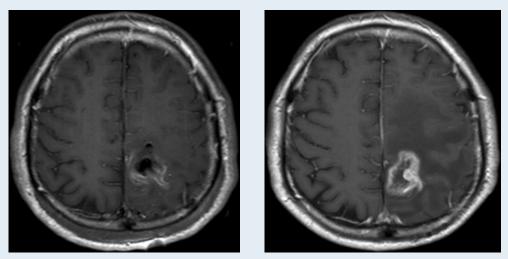
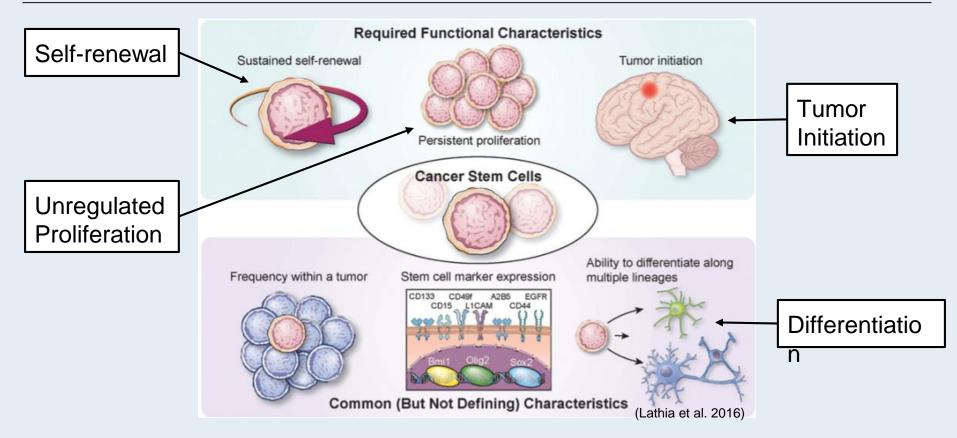
Exploiting Zika Virus Neurotropism: A Potential Treatment for Glioblastoma

The Kids R.Kelly Peed On Karan Dhindsa, Mikaela Lodl, Luke Millisor & Evie Mitchell

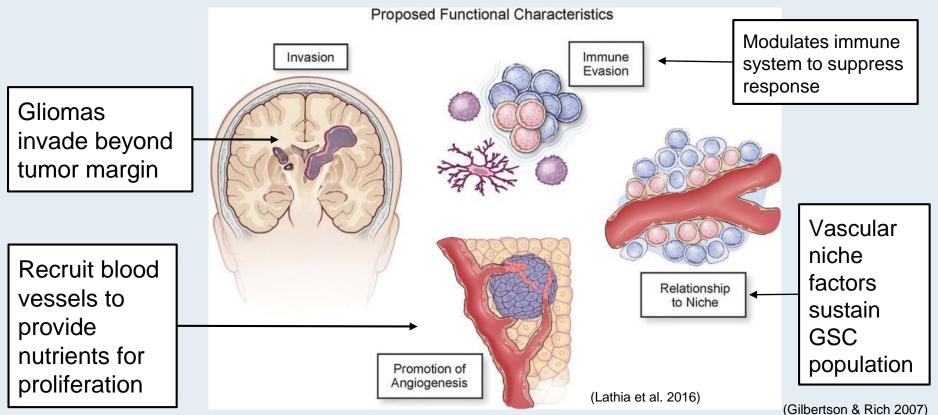

Background Information

Glioblastoma

- Most common & most aggressive intrinsic brain tumor
- Always malignant!
- *Rarely* metastasize outside of the CNS
- Derived from adult neural stem & progenitor cells
- Lethal \rightarrow average survival below 2 years
 - Very aggressive & very difficult to treat
 - No cure


Recurrent Glioblastoma

 Recur within 2cm of tumor margin in 90% of patients if surgically removed or shrunk by treatment



(Leitzen et al. 2016)

Glioblastoma Stem Cells (GSCs)

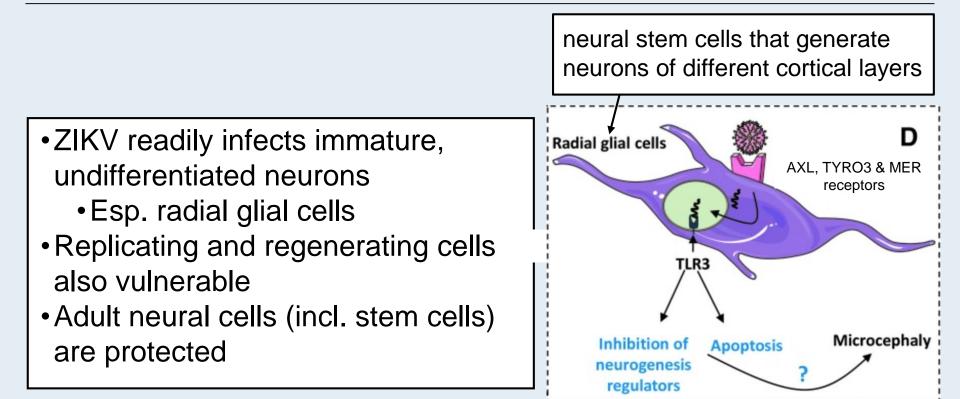
Glioblastoma Stem Cells Drive Tumor Growth

Virotherapy Against Tumors

- Glioblastomas are uniquely aggressive due to GSCs
- This displays a need for localized treatment
 - Needs to infect and kill tumor cells specifically

Virotherapies Against Glioblastoma in Progress

- Dr. Henry Friedman at Duke is working on recombinant polio/rhinovirus
 - Has shown success in clinical trial
 - FYI: he is on 60 minutes if you're interested
 - He is coming out w/ a massive paper soon
- Over 20 potential oncolytic viruses discovered:
 - Measels
 - Herpes simplex
 - Parvovirus
 - Adeno virus Dogs get this :(


Benefit of Using Zika Virus

- Even in its natural state, it is less toxic to neurons
- Low levels of infection compared to other flaviviruses
- Zika virus has an advantage over dengue virus or West Nile because of cofactor of AXL ligands.

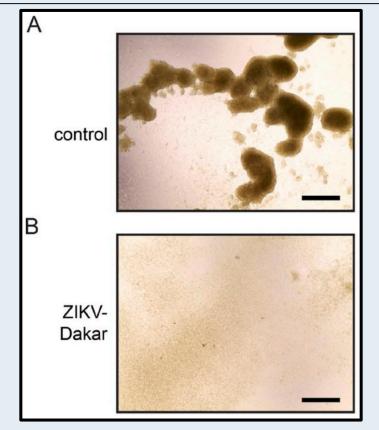

Zika Virus

- RNA virus
- Flavivirus genus
- Most commonly transmitted by infected mosquito
- Mostly asymptomatic for adults
- Infection during/before pregnancy → fetal loss, congenital microcephaly or other severe brain abnormalities

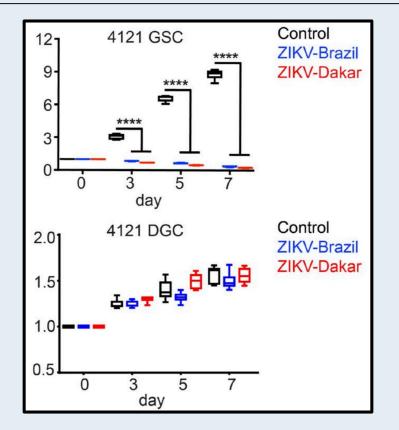
Zika Virus Targets Neural Progenitors

Zika Virus Invades the CNS

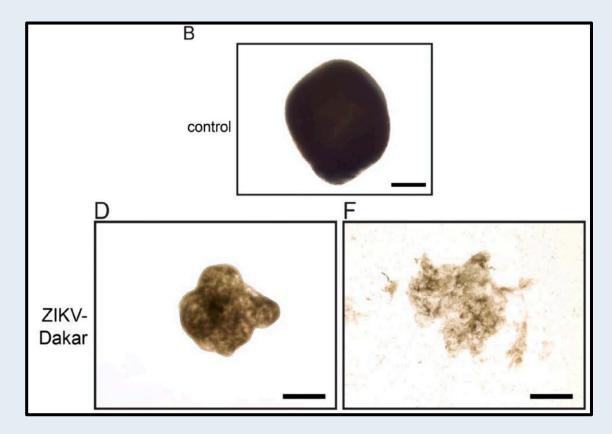
Zika Virus Has Oncolytic Activity Against Glioblastoma Stem Cells Zhu et al. (2017)

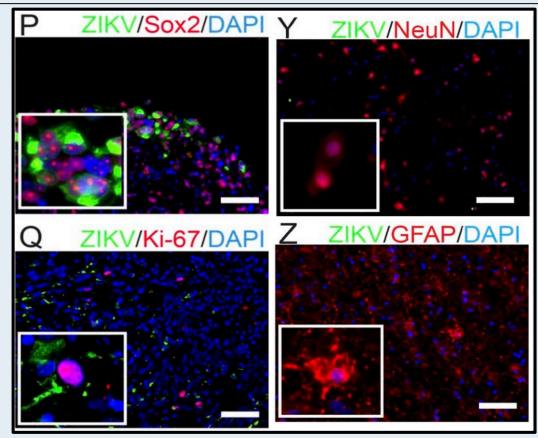

Zika Virus Has Oncolytic Activity Against Glioblastoma Stem Cells (Zhu et al. 2017)

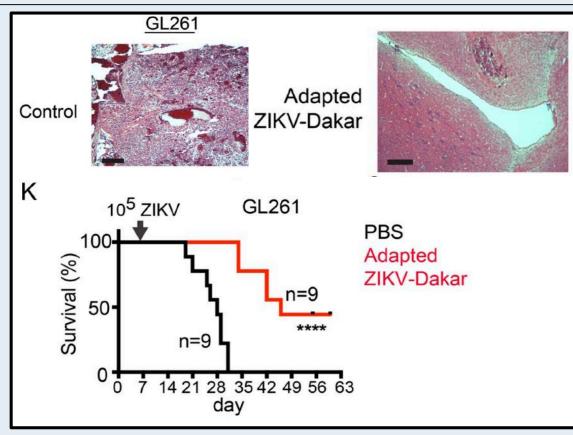
Hypothesis

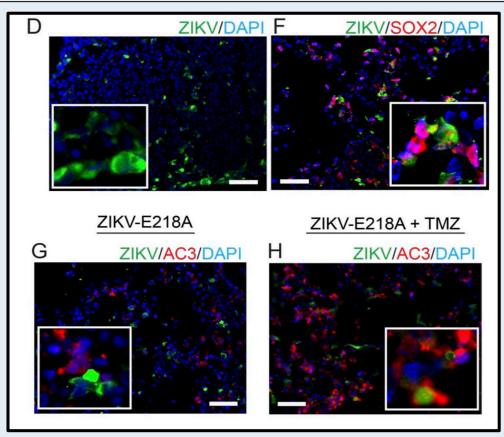

• Tropism of ZIKV for neural precursor cells can be leveraged against glioblastomas

Methods/Results


ZIKV infects human GSCs and inhibits proliferation


ZIKV Selectively infects GSCs


ZIKV prevents proliferation in glioblastoma organoids


ZIKV targets GSCs in human tissue specimens

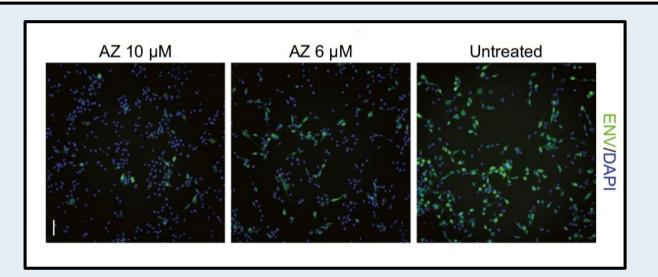
ZIKV attenuates glioma growth and prolongs survival

Mutated ZIKV maintains effectiveness against GSCs and has additive effects with temozolomide chemotherapy

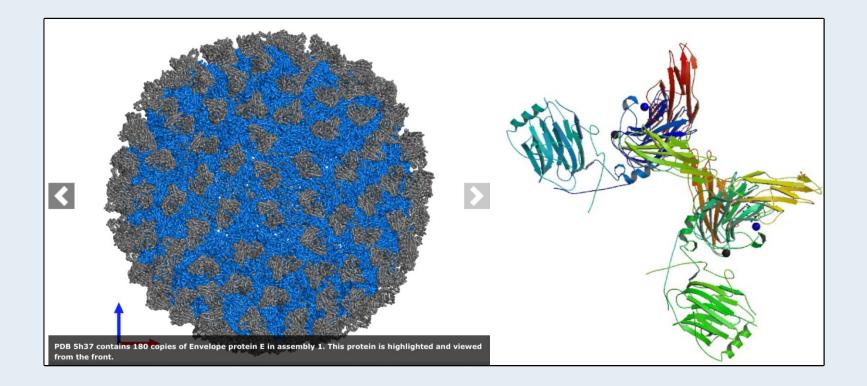
How does ZIKV preferentially target GSCs for infection and trigger GSC death?

We don't know!

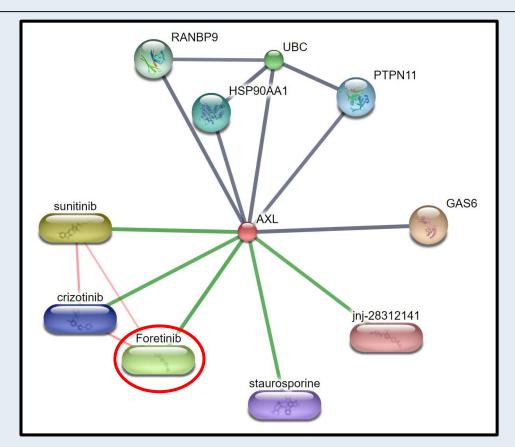
GSCs Suppress Antitumor Immune Response


- Interferon (IFN) signaling increased in DGCs & suppressed in GSCs
 - IFNs: signaling proteins made/released by
- Immune response in DGCs protects against ZIKV infection
- ZIKV infects GSCs due to suppressed immune response
 - Pathway most activated by ZIKV infection \rightarrow <u>IFN</u>
 - IFN activation by ZIKV \rightarrow apoptosis of GSCs

High AXL Receptor Expression in Glioblastomas


- AXL highly expressed on radial glia (neural stem cells)
- AXL highly expressed in glioblastomas
 - AXL = hypothesized mechanism of ZIKV entry into radial glial cells
- AXL might also play a role in tumor progression
 - Esp. angiogenesis, which is crucial to tumor cell proliferation

High AXL Expression in Glioblastomas


 Pharmaceutical blocking and genetic knockdowns of AXL receptors reduced ZIKA infection in glial stem cells

High AXL Expression in Glioblastomas

AXL is targeted by anti-cancer drugs

Limitations

- Mice are not natural hosts for ZIKV
- ZIKV pathogenesis studies have used immunocompromised mouse models
- This study used a mouse-adapted ZIKV strain
- ZIKV still infects non-tumor neural cells, just at a very low rate
 - Need to prevent toxicity to humans

Difficulties with ZIKV

- There are two common strains of ZIKV- an African lineage and Asian lineage.
 - Genetic diversity between the two are important, as there is increased brain developmental abnormalities with the Asian lineage of the virus.
- It can be difficult to detect within individuals, as 80% of patients do not display clinical symptoms
 - This prevents diagnostic and surveillance methods

Future Direction

- Creating patient-derived glioblastoma models in more immunocompetent mice
- Further modification of ZIKV strain to reduce toxicity to non-tumor neural cells
- Evaluate efficacy of ZIKV in patient-derived GSCs in vivo
- Advancement in cancer treatment

Research that Needs to Happen First?

- Creating a better understanding of the ZIKV mechanism is crucial in order to push this kind of treatment through the FDA
- The rarity, high death rate and small advancement in Glioblastoma treatment, makes "radical" treatments more compelling.
- ZIKV could prove to be effective for other types or diseases and cancers.

Citations

- Desai, S. K., Hartman, S. D., Jayarajan, S., Liu, S., & Gallicano, G. I. (2017). Zika Virus (ZIKV): a review of proposed mechanisms of transmission and associated congenital abnormalities. *American journal of stem cells*, 6(2), 13.
- Hughes BW, Addanki KC, Sriskanda AN, McLean E, Bagasra O (2016) Infectivity of immature neurons to zika virus: a link to congenital zika syndrome. EBioMedicine 10:65-70. <u>https://doi.org/10.1016/j.ebiom.2016.06.026</u>
- Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203-1217. http://doi.org/10.1101/gad.261982.115
- Miner JJ & Diamond MS (2017) Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21:134-132. http://dx.doi.org/10.1016%2Fj.chom.2017.01.004
- Ming GL, Tang H, Song H (2016) Advances in Zika virus research: stem cell models, challenges, and opportunities. Cell Stem Cell 19(6):690-702. https://doi.org/10.1016/j.stem.2016.11.014
- Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR (2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in human neural stem cells. Cell Stem Cell 18(5):591-596. <u>http://dx.doi.org/10.1016%2Fj.stem.2016.03.012</u>
- Retallack, H., Lullo, E. D., Arias, C., Knopp, K. A., Sandoval-Espinosa, C., Laurie, M. T., . . . Kriegstein, A. R. (2016). Zika Virus in the Human Placenta and Developing Brain: Cell Tropism and Drug Inhibition. doi:10.1101/058883
- Olagnier D, Muscolini M, Coyne CB, Diamond MS, Hiscott J (2016) Mechanisms of zika virus infection and neuropathogenesis. DNA Cell Biol 35(8): 367–372. http://doi.org/10.1089/dna.2016.3404
- Onken J, Vajkoczy P, Torka R, Hempt C, Patsouris V, Heppner FL, Radke J (2017) Phospho-AXL is widely expressed in glioblastoma and associated with significant shorter overall survival. Oncotarget 8(31):50403-50414. http://doi.org/10.18632/oncotarget.18468
- Zhu et al. (2017) Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med 214(10):2843-2857. https://doi.org/10.1084/jem.20171093
- Gilbertson RJ & Rich JN (2007) Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733-736. doi:10.1038/nrc2246
- Zhang, S., Kostyuchenko, V. A., Ng, T.-S., Lim, X.-N., Ooi, J. S. G., Lambert, S., ... Lok, S.-M. (2016). Neutralization mechanism of a highly potent antibody against Zika virus. *Nature Communications*, 7, 13679. <u>http://doi.org/10.1038/ncomms13679</u>