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Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly
similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS,
ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA pro-
cessing and protein homeostasis is an emerging theme. We present the case here that these two processes
are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein
and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent
the mechanism for relentless disease progression.
Introduction
Amyotrophic lateral sclerosis (ALS, familiarly known in the United

States as Lou Gehrig’s disease) was first reported 140 years ago

by the great French physician Jean-Martin Charcot. The name

describes the key features of the disease: muscle wasting

(amyotrophic) due to the degeneration of lower motor neurons

and their axons and loss of upper motor neurons and their corti-

cospinal axonal tracts (lateral sclerosis). In contrast to ALS, fron-

totemporal dementia (FTD) (also known as frontotemporal lobar

degeneration [FTLD]) is a progressive neuronal atrophy with loss

in the frontal and temporal cortices and is characterized by per-

sonality and behavioral changes, as well as gradual impairment

of language skills. It is the second most common dementia after

Alzheimer’s disease (Van Langenhove et al., 2012).

Here, we review the key findings that have revealed a tangled

web in which multiple pathways are involved in disease initiation

and progression in ALS and FTD. RNA and protein homeostasis

pathways are intimately linked and their dysfunction is funda-

mentally involved in disease pathogenesis. Perturbation of either

pathway can amplify an initial abnormality through a feedforward

loop, which may underlie relentless disease progression.

Convergence of Pathogenic Mechanisms of ALS
and FTD
Largely indistinguishable, familial (10%) and sporadic (90%) ALS

are characterized by premature degeneration of upper and lower

motor neurons. Mutations in four genes (C9ORF72, SOD1,

TARDBP, and FUS/TLS) account for over 50% of the familial

cases (Table S1 available online). For FTD, a stronger genetic

contribution is reflected by the higher percentage (up to 50%)

of patients with a familial history. This includes the first two

identified causal genes encoding the microtubule-associated

protein tau (MAPT) (Hutton et al., 1998) and progranulin

(PGRN) (Baker et al., 2006; Cruts et al., 2006), which together ac-
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count for 10%–20% of FTD (Van Langenhove et al., 2012). More

rarely, mutations in TDP-43 and FUS/TLS are causal for FTD (re-

viewed in Lagier-Tourenne et al., 2010; Mackenzie et al., 2010a).

Recently, hexanucleotide expansion in the C9ORF72 gene

was found to be a common genetic cause for ALS and FTD

(DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012; Renton

et al., 2011) (Table S1).

It is estimated that 15% of FTD patients meet ALS criteria

(Ringholz et al., 2005), and ALS can be accompanied by cogni-

tive and behavioral impairment, with perhaps as much as 15%

of affected individuals also developing symptoms consistent

with a typical definition of FTD (Ringholz et al., 2005; Wheaton

et al., 2007). ALS and FTD are linked clinically, pathologically,

and mechanistically, and the diseases are now properly recog-

nized as representatives of a continuum of a broad neurode-

generative disorder, with each presenting in a spectrum of

overlapping clinical symptoms (Figure 1).

A breakthrough linking disease mechanisms for ALS and FTD

camewith the identification of TDP-43 as themajor ubiquitinated

protein found in both sporadic ALS patients and the most

frequent pathological form of FTD (Arai et al., 2006; Neumann

et al., 2006). This finding was followed by the discovery of muta-

tions in the gene encoding the RNA-binding protein TDP-43 in

�5% of familial ALS cases (Kabashi et al., 2008; Sreedharan

et al., 2008; Van Deerlin et al., 2008) and rare patients with FTD

(Borroni et al., 2009; Kovacs et al., 2009).

Recognition that errors in RNA-binding proteins are causative

of ALS and FTD was quickly expanded, with mutations in

the fused in sarcoma/translocated in liposarcoma (FUS/TLS)

gene shown to account for an additional �5% of familial ALS

and also rare cases of FTD (Kwiatkowski et al., 2009; Vance

et al., 2009). Subsequent confirmation that FUS/TLS was pre-

sent in the pathological inclusions in most of the FTD patients

without TDP-43-containing inclusions has led to a proposed
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Figure 1. Clinical, Genetic, and Pathological Overlap of ALS and FTD
(A) ALS and FTD represent a continuum of a broad neurodegenerative disorder
with each presenting as extremes of a spectrum of overlapping clinical
symptoms (ALS in red and FTD in purple). Major known genetic causes for ALS
and FTD are plotted according to the ratio of known mutations that give rise to
ALS or FTD.
(B) Pathological protein inclusions in ALS and FTD, according to the major
protein misaccumulated. Inclusions of TDP-43 and FUS/TLS in ALS and FTD
reflect the pathological overlap of ALS and FTD.
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reclassification of FTD based on the main protein component

accumulated (Mackenzie et al., 2010b; Sieben et al., 2012).

These include FTLD-tau (45%), FTLD-TDP (45%), FTLD-FUS

(9%), and a remaining 1% named FTLD-UPS (for ubiquitin-pro-

teasome system) (Figure 1). Altogether, these findings highlight

two main discoveries: (1) TDP-43 and FUS/TLS, both RNA-bind-

ing proteins linked to multiple steps of RNA metabolism, are the

major protein components of pathological inclusions observed in

over 90% of ALS and over 50% of FTD patients, and (2) errors in

RNA processing may be central to ALS and FTD pathogenesis.

A further direct molecular link between ALS and FTDwas iden-

tification of a large intronic hexanucleotide expansion (�400–

1,600 GGGGCC repeats) in the previously uncharacterized

gene C9ORF72 (named for its location on chromosome 9,

open reading frame 72) in families with either ALS, FTD, or

both (DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012;

Renton et al., 2011). The expanded repeat in C9ORF72 is remi-

niscent of previously studied repeat expansion diseases (La

Spada and Taylor, 2010), especially myotonic dystrophy and

fragile X mental retardation syndrome, whose precedents sup-

port at least two possible pathogenic mechanisms: RNA-medi-

ated toxicity or haploinsufficiency.

ALS-, ALS/dementia-, and/or FTD-causing mutations were

also identified in genes involved in protein clearance pathways

or maintaining proper protein homeostasis, including ubiquilin-2

(UBQLN2) (Deng et al., 2011), vasolin-containing protein (VCP)

(Johnson et al., 2010; Watts et al., 2007), vesicle-associated

membrane protein-associated protein B (VAPB) (Nishimura

et al., 2004), p62/sequestosome (SQSTM1) (Fecto et al., 2011;
Rubino et al., 2012; Teyssou et al., 2013), optineurin (OPTN)

(Maruyama et al., 2010), and chargedmultivesicular body protein

2B or chromatin modifying protein 2B (CHMP2B) (Parkinson

et al., 2006; Skibinski et al., 2005). Coupledwith protein aggrega-

tion as a major pathological hallmark of both ALS and FTD, the

genetic discoveries indicate that disruption in protein homeosta-

sis (or proteostasis) is a key characteristic of both diseases.

ALS- and FTD-Linked Genes Disrupt RNA Homeostasis
Identification of disease-linked mutations in TDP-43 and FUS/

TLS marked the beginning of a paradigm shift, highlighting dys-

functions in RNA metabolism as a central pathogenic pathway

in ALS and FTD. TDP-43 and FUS/TLS share similar structural

and functional properties with probable involvement in multiple

RNA processing steps (Lagier-Tourenne et al., 2010). ALS-

linked mutations have been identified in genes encoding

TAF15 (TATA-binding protein-associated factor 15) (Couthouis

et al., 2011; Ticozzi et al., 2011) and EWSR1 (Ewing’s sarcoma

breakpoint region 1) (Couthouis et al., 2012), two proteins that

are functionally and structurally similar to FUS/TLS, albeit the

mutations have not been proven to be causative of disease.

Altogether, with additional ALS-linked mutations in the RNA-

binding proteins angiogenin (Greenway et al., 2006), senataxin

(Chen et al., 2004), and ataxin-2 (Elden et al., 2010), disruption

in RNA homeostasis seems highly likely to play a central role

in ALS pathogenesis.

TDP-43 and FUS/TLS Reshape ALS and FTD
TDP-43 Mutation and Pathology in ALS and FTD

TDP-43 is a 414 amino acid protein containing two RNA recogni-

tion motifs (RRMs) followed by a glycine-rich, low-sequence

complexity prion-like domain (Kato et al., 2012; King et al.,

2012). TDP-43 can shuttle between the cytosol and the nucleus

(Ayala et al., 2008; Winton et al., 2008), although the majority of

TDP-43 appears to be nuclear in most cells at steady state. Path-

ological inclusions of TDP-43 can be found in the nucleus and

cytosol of neurons and glia, with abnormal phosphorylation and

ubiquitination of TDP-43 and the presence of truncated C-termi-

nal fragments (Arai et al., 2006; Neumann et al., 2006). More than

40mutations in sporadic and familial ALS, aswell as in rare cases

of FTD (reviewed in Lagier-Tourenne et al., 2010; Lattante et al.,

2013), are found clustered within the prion-like domain (so

named because of its similarity to fungal prions) (Figure S1).

In the absence of mutation, TDP-43 pathology can be found

in the majority of ALS patients, with the exception of patients

with SOD1 mutations (Mackenzie et al., 2007; Tan et al., 2007),

and is apparently indistinguishable between patients with or

without TDP-43 mutations (Pamphlett et al., 2009). Cells with

TDP-43 aggregates typically have concomitant loss of nuclear

TDP-43, indicating loss of nuclear TDP-43 function, while the

presence of cytoplasmic protein inclusions suggests gain of

one or more toxic properties. Thus, the pathogenic mechanisms

for TDP-43 are likely to be a combination of both loss-of-function

and gain-of-toxic properties.

Normal Function of TDP-43

TDP-43 was first identified as a protein that bound to the trans-

activation response (TAR) element of HIV human immunodefi-

ciency virus and was named TAR DNA-binding protein-43 kDa.
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Figure 2. Physiological Roles of TDP-43 and FUS/TLS in RNA Processing
Proposed roles for FUS/TLS include (1) association with TBP within the TFIID complex as a participant in the general transcriptional machinery and (2) binding to
long introns in a sawtooth-like pattern, consistent with cotranscriptional deposition. Both TDP-43 and FUS/TLS (3) associate with promoter regions. TDP-43
binds single-stranded TG-rich elements in promoter regions, thereby blocking transcription of the downstream gene. In response to DNA damage, FUS/TLS is
recruited in the promoter region of cyclin D1 (CCND1) by sense and antisense noncoding RNAs (ncRNAs) and represses CCND1 transcription. BothTDP-43 and
FUS/TLS (4) bind long intron-containing RNAs, thereby sustaining their levels. (5) TDP-43 and FUS/TLS control the splicing of >950 or >370 RNAs, respectively,
either via direct binding or indirectly. TDP-43 and FUS/TLS (6) bind long noncoding RNAs, (7) complex with Drosha (consistent with an involvement in miRNA
processing), and (8) bind 30UTRs of a large number of mRNAs. Both TDP-43 and FUS/TLS shuttle between the nucleus and the cytosol and are incorporated into
(9) transporting RNA granules and (10) stress granules, in which they form complexes with mRNAs and other RNA-binding proteins.
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TDP-43 can act as a transcriptional repressor and is associated

with proteins involved in transcription (Ling et al., 2010; Sephton

et al., 2011), including methyl CpG-binding protein 2 (MeCP2)

(Sephton et al., 2011), whose mutations are causative for Rett

syndrome. Genome-wide approaches are now needed to iden-

tify the complete set of genes for which TDP-43 plays a tran-

scriptional role through its direct DNA binding. TDP-43 is

involved in many aspects of RNA-related metabolism, including

splicing, microRNA (miRNA) biogenesis, RNA transport and

translation, and stress granule formation by interacting with

numerous hnRNPs, splicing factors, and microprocessor pro-

teins (reviewed in Buratti and Baralle, 2012; Lagier-Tourenne

et al., 2010; Polymenidou et al., 2012) (Figure 2A).

TDP-43’s RNA Targets

An unbiased genome-wide approach was used to identify the

in vivo RNA targets for TDP-43 in mouse (Polymenidou et al.,
418 Neuron 79, August 7, 2013 ª2013 Elsevier Inc.
2011) and human (Tollervey et al., 2011) brain. More conven-

tional methodology has also been used in an effort to identify

RNA targets of TDP-43 in rat cortical neurons (Sephton et al.,

2011), a mouse NSC-34 cell line (Colombrita et al., 2012), and

a human neuroblastoma cell line (Xiao et al., 2011). It is clear

that TDP-43 binds to more than 6,000 RNA targets in the brain,

roughly 30% of the total transcriptome (Figure 3). The localiza-

tion of TDP-43’s binding sites across different pre-mRNAs re-

veals its various roles in RNAmaturation. Indeed, intronic binding

of TDP-43 on long-intron (>100 kb)-containing RNA targets was

shown to be required for sustaining their normal levels (Polyme-

nidou et al., 2011). Splice site selection may be influenced by

TDP-43 binding near exon-intron junctions as well as in the in-

tronic regions far away (>2 kb) from the nearest exon (Polymeni-

dou et al., 2011; Tollervey et al., 2011). In addition, TDP-43 bind-

ing on the 30UTR of mRNAsmay affect their stability or transport,
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while TDP-43 binding on long noncoding RNAs (ncRNAs) may

influence their regulatory roles.

TDP-43 levels matter greatly for normal RNA maturation.

Antisense oligonucleotide-mediated reduction of TDP-43 within

an otherwise normal mouse nervous system affects the

levels of more than 600 mRNAs and the splicing pattern of

another �950 (Polymenidou et al., 2011). TDP-43 also binds

to the 30UTRs of more than 1,000 transcripts (Polymenidou

et al., 2011; Tollervey et al., 2011), including its own mRNA,

presumably affecting nuclear or cytoplasmic RNA stability. It

also has binding sites on many ncRNAs whose functions are

not yet clearly defined but include chromatin remodeling,

transcription regulation, and posttranscriptional processing.

Among these, TDP-43 binds to long (>200 base) ncRNAs,

including nuclear-enriched autosomal transcript 1 (NEAT1)

and metastasis-associated lung adenocarcinoma transcript 1

(MALAT1) (Tollervey et al., 2011). Expression of both NEAT1

and MALAT1 is elevated in FTD-TDP (also known as FTLD-

TDP) patients, which correlates with increased TDP-43 associ-

ation with both ncRNAs (Tollervey et al., 2011). These data

suggest that TDP-43 may affect RNA metabolism, including

>300 mRNAs without TDP-43 binding sites but whose abun-

dance increases through an indirect mechanism when TDP-

43 is reduced (Polymenidou et al., 2011).

The binding of TDP-43 to small (<200 base) ncRNAs and

miRNAs remains largely unexplored. Nonetheless, the associa-

tion of TDP-43 with Drosha microprocessor (Ling et al., 2010)

and Dicer complexes (Freibaum et al., 2010; Kawahara and

Mieda-Sato, 2012) is suggestive of a TDP-43 involvement in

miRNA biogenesis. Indeed, let-7b miRNA is downregulated,

whereas miR-663 is upregulated after reduction in TDP-43

(Buratti et al., 2010).

FUS/TLS Mutation and Pathology in ALS and FTD

ALS/FTD-linked mutations in FUS/TLS are clustered into two

groups: mutations in the low-complexity/prion-like domain and

mutations in the C-terminal nuclear localization signal (NLS)

(Figure S1). Mutations in the latter group typically lead to
Neuron 7
increased cytoplasmic localization of

FUS/TLS (Kwiatkowski et al., 2009;

Vance et al., 2009) and several are asso-

ciated with juvenile onset ALS (Bäumer

et al., 2010; Belzil et al., 2012; Huang

et al., 2010; Yamashita et al., 2012).

Distinct patterns of FUS pathology

have been correlated with disease

severity and mutation (Mackenzie et al.,

2011). Early-onset ALS cases are charac-

terized by basophilic inclusions and

round neuronal cytoplasmic FUS inclu-
sions, whereas late-onset ALS cases are characterized by

tangle-like FUS-containing inclusions in both neurons and glial

cells. FUS inclusions in the absence of FUS mutations have

also been reported in FTD, Huntington’s disease, and spinocer-

ebellar ataxia 1 and 2 (reviewed in Lagier-Tourenne et al., 2010).

Normal Function of FUS/TLS

Similar to TDP-43, FUS/TLS can bind to single- and double-

stranded DNA, as well as RNA, and almost certainly participates

in a wide range of cellular processes (Lagier-Tourenne et al.,

2010; Tan and Manley, 2009).

Transcription. All three members of the FET (FUS/TLS,

EWSR1, and TAF-15) family have been shown to associate

with RNA polymerase II (RNAP II) and its general transcription

factor TFIID. FUS/TLS and TAF15 fractionate with different pop-

ulations of TFIID complexes, suggesting that they may affect

different promoters (Bertolotti et al., 1996). It is likely that FUS/

TLS can affect the transcription of specific genes through its

association with several nuclear hormone receptors (Powers

et al., 1998) and gene-specific transcription factors. Indeed, a

recent study identified potential FUS/TLS-response elements

of many target genes, indicative of transcriptional activation or

repression directly by FUS/TLS (Tan et al., 2012). FUS/TLS can

also associate with TBP and TFIIIB to repress transcription by

RNAP III, which transcribes small structural and catalytic RNAs

(Tan and Manley, 2010).

Splicing. FUS/TLS has been identified as part of the spliceo-

some machinery in three independent proteomic studies (Hart-

muth et al., 2002; Rappsilber et al., 2002; Zhou et al., 2002).

The association of FUS/TLS with the spliceosome and various

splicing factors initially implicated FUS/TLS in a cotranscriptional

role and/or splicing regulation of pre-mRNAs, a prediction vali-

dated by demonstration that about 1,000 RNAs change in

splicing pattern or abundance in a FUS/TLS-dependent manner

in the mouse brain (Lagier-Tourenne et al., 2012) (Figure 3).

FUS/TLS’s RNA Targets

Genome-wide approaches (summarized in Figure 3) have identi-

fied more than 8,000 in vivo RNA targets for FUS/TLS in mouse
9, August 7, 2013 ª2013 Elsevier Inc. 419
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(Lagier-Tourenne et al., 2012; Rogelj et al., 2012), 5,500 in human

(Lagier-Tourenne et al., 2012), and more than 6,800 in various

cell lines (Colombrita et al., 2012; Hoell et al., 2011; Ishigaki

et al., 2012; Nakaya et al., 2013). A GUGGU sequence is the

most prominent binding motif (Lagier-Tourenne et al., 2012). In

addition, AU-rich stem loops bound by FUS/TLS have also

been proposed (Hoell et al., 2011). A sawtooth-like binding

pattern to long introns (Lagier-Tourenne et al., 2012; Rogelj

et al., 2012) is consistent with cotranscriptional deposition of

FUS/TLS and suggests that FUS/TLS remains bound to pre-

mRNAs until splicing is completed. In addition, FUS/TLS shows

enrichment in binding to 30UTRs and exons.

Interestingly, RNAs bound by TDP-43 and FUS/TLS are largely

distinct (Lagier-Tourenne et al., 2012; Rogelj et al., 2012).

Indeed, depletion of FUS/TLS from an otherwise normal adult

mouse nervous system alters levels or splicing of >970 mRNAs,

most of which are distinct from RNAs dependent on TDP-43.

Remarkably, only 45 RNAs are reduced upon depletion of either

TDP-43 or FUS/TLS from mouse brain, including mRNAs tran-

scribed from genes with exceptionally long introns and that

encode proteins essential for neuronal integrity (Lagier-Tourenne

et al., 2012). A subset of these is significantly lowered after TDP-

43 or FUS/TLS depletion in stem cell-derived human neurons

and in TDP-43 aggregate-containing motor neurons in sporadic

ALS, evidence pointing to a common loss-of-function pathway

as one component underlyingmotor neuron death frommisregu-

lation of TDP-43 or FUS/TLS (Lagier-Tourenne et al., 2012).

Cytoplasmic Functions of TDP-43 and FUS/TLS
TDP-43 and FUS/TLS in Cytoplasmic RNA Granules

TDP-43 and FUS/TLS shuttle from the nucleus to the cytosol

(Ayala et al., 2008; Zinszner et al., 1997), where they have been

associated with cytoplasmic RNA granules that contain non-

translating mRNAs. These granules include processing bodies

(P bodies), which contain RNA decay machinery (Buchan and

Parker, 2009), stress granules, which contain translationmachin-

ery (Anderson and Kedersha, 2009), and transporting RNP gran-

ules, which contain RNAs to be locally translated (Kiebler and

Bassell, 2006).

TDP-43 and FUS/TLS at the Synapse

Deletion of FUS/TLS has produced abnormal dendritic and spine

morphology in cultured hippocampal neurons (Fujii et al., 2005).

Evidence suggests that FUS/TLS may play an important role in

regulating synaptic function, possibly through local transport

and translation. In dendrites of cultured hippocampal neurons,

TDP-43 has been shown to colocalize with fragile X mental retar-

dation protein (FMRP) and staufen, two proteins that mark trans-

porting RNP granules and P bodies (Wang et al., 2008). Given the

evidence that TDP-43 and FUS/TLS bind to many RNA targets

important for synaptic function and that TDP-43 and FUS/TLS

localize to dendrites in response to neuronal activation (Fujii

et al., 2005; Wang et al., 2008), dysfunction of TDP-43 or FUS/

TLS is highly likely to alter synaptic function.

Assembly of RNA Granules through Prion-like Domains

Both TDP-43 and FUS/TLS contain low-sequence complexity

(LC), fungal prion-like domains (King et al., 2012), for which a

normal function in RNA granule assembly has recently been pro-

posed (Han et al., 2012b; Kato et al., 2012). Assembly of the LC
420 Neuron 79, August 7, 2013 ª2013 Elsevier Inc.
domain of FUS/TLS produces amyloid-like fibers that, in contrast

to pathological amyloid inclusions, are reversible (Kato et al.,

2012). Induced assembly of LC domains—along with their linked

RNA-binding domains—provides a basis for RNA granule

assembly and possibly for cell-to-cell spreading.

Disease Mechanisms for Mutant TDP-43 and FUS/TLS
Evidence for Gain of Toxicity from Mutant TDP-43

Multiple transgenic approaches have been employed to identify

properties of mutant TDP-43. We focus here only on mammalian

models; readers are directed to excellent reviews elsewhere on

yeast, Drosophila, C. elegans, and other animal models (Da

Cruz and Cleveland, 2011; Joyce et al., 2011; McGoldrick

et al., 2013). It should be acknowledged that the multiple efforts

that have produced TDP-43 transgenic mice and rats have—for

the most part—been disappointing. One effort (with a prion-

promoted TDP-43Q331K) did produce age-dependent, mutant-

dependent motor neuron disease in which about half of the lower

motor neurons died, but disease then plateaued despite con-

tinued mutant TDP-43 accumulation at a constant level (Arnold

et al., 2013). Mutant TDP-43-dependent degeneration of lower

(but not upper) motor neurons occurred without loss of nuclear

TDP-43 or accumulation of TDP-43 aggregates but was accom-

panied by both loss and gain of splicing function of selected RNA

targets at an early disease stage. Thus, disease mechanism is

apparently both gain of aberrant property and loss of function.

Inexplicably, a similar prion-promoted transgenic line (TDP-

43A315T) develops disease with very different characteristics:

upper motor neuron loss (Wegorzewska et al., 2009) with very

modest lower motor neuron disease, prior to death from bowel

obstruction (Esmaeili et al., 2013; Guo et al., 2012).

Additional TDP-43 transgenic efforts have established that

increased TDP-43 levels (by less than a factor of 2) of either

wild-type or mutant TDP-43 are highly deleterious (Igaz et al.,

2011; Wils et al., 2010). This has revealed a crucial role for an

autoregulatory pathway that maintains TDP-43 RNA levels. Evi-

dence for autoregulation of TDP-43 has been repeatedly seen:

inactivation of one copy of TDP-43 in mice does not affect either

themRNA or protein level of TDP-43 (Kraemer et al., 2010; Seph-

ton et al., 2010). Autoregulation is mediated, at least in part, by

TDP-43-dependent splicing of an intron in the 30UTR of its own

mRNA (Avendaño-Vázquez et al., 2012; Ayala et al., 2011b; Pol-

ymenidou et al., 2011). Splicing of this intron generates an unsta-

ble RNA degraded by nonsense-mediated decay (Polymenidou

et al., 2011). An additional proposal is that this TDP-43-depen-

dent 30UTR splicing event activates a cryptic polyadenylation

site whose use leads to nuclear retention of TDP-43 RNA

(Avendaño-Vázquez et al., 2012).

Increasing TDP-43 levels in mice and rats (by expression of

RNAs missing the autoregulatory sequences (Wegorzewska

et al., 2009; Wils et al., 2010; Igaz et al., 2011; Arnold et al.,

2013) or by disrupting autoregulation (Igaz et al., 2011) has pro-

duced neurodegeneration. The level of expression determines

the severity of disease (e.g., Wils et al., 2010; Igaz et al., 2011;

Arnold et al., 2013). Mice expressing autoregulated wild-type

and ALS-linked mutant genomic TDP-43 transgenes develop

very mild, late-onset cognitive andmotor deficits but without pa-

ralysis (Swarup et al., 2011). Age-dependent, mutant-dependent
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motor neuron disease develops with TDP-43Q331K accumulating

to a level similar to the normal level of endogenous TDP-43

(Arnold et al., 2013). Expression of genes missing the autoregu-

latory 30UTR—thereby permitting accumulation of mutant TDP-

43M337V (to an undetermined level)—drives paralysis in rats

within 35 days after inducing transgene expression broadly

(Zhou et al., 2010) or within 15 days when the transgene is

induced panneuronally (Huang et al., 2012).

TDP-43 Loss of Function in Disease

Loss of nuclear function of TDP-43 is clearly a component of the

disease process, as nuclear clearing accompanied by cyto-

plasmic accumulation of TDP-43 has been universally reported

in surviving neurons in patients with TDP-43 mutant-mediated

ALS (Van Deerlin et al., 2008). Not unexpectedly, TDP-43 is an

essential gene in mice, yielding embryonic lethality (Chiang

et al., 2010; Kraemer et al., 2010; Sephton et al., 2010; Wu

et al., 2010), while TDP-43 heterozygote mice are viable and

fertile with autoregulation maintaining nearly normal TDP-43

levels (Kraemer et al., 2010).

Ubiquitous postnatal removal of TDP-43 through conditional

TDP-43 gene inactivation produced rapid lethality without motor

neuron disease (Chiang et al., 2010). Selective removal of TDP-

43 from motor neurons produced age-dependent progressive

motor neuron degeneration with ALS-like pathology, although

in one study the mice lived a normal life span (Iguchi et al.,

2013) and in the other study only the male mice developed

pathology and phenotype (Wu et al., 2012). These observations

are consistent with the notion that while neuronal loss of function

of TDP-43 may contribute to disease development and progres-

sion, it is insufficient to produce fatal motor neuron disease.

TDP-43’s RNA Targets and Disease Pathogenesis

Among the more than 6,000 RNAs normally bound by TDP-43—

and the 1,500 who are changed in abundance or splicing pattern

when nuclear TDP-43 is depleted (Figure 3)—are TDP-43 itself,

FUS/TLS, glial excitatory amino acid transporter-2 (EAAT2),

amyloid beta precursor protein (APP), presenilin, huntingtin,

multiple ataxins, a-synuclein, progranulin, and tau (Polymenidou

et al., 2011; Sephton et al., 2011). The most prominently affected

class of RNAs are pre-mRNAs with exceptionally long introns

(>100 kb), whose expression is enriched in brain and whose en-

coded proteins are involved in synaptic activity and functions,

including parkin 2 (PARK2), neurexin 1 and 3 (NRXN1 and

NRXN3), and neuroligin 1 (NLGN1), whose mutations are associ-

ated with various neurological diseases.

Additionally, among the >600 RNAs whose splicing patterns

are altered when TDP-43 levels are reduced are FUS/TLS itself

and EAAT2, with expression of the latter also reduced in FTD-

TDP brain (Tollervey et al., 2011). Many ALS-linked genes,

including ALSIN, CHMP2B, FIG4, VAPB, and VCP, are bound

by TDP-43, and their expression is modestly altered upon

TDP-43 depletion (Polymenidou et al., 2011). TDP-43 also regu-

lates the splicing of sortilin, a tentative receptor for progranulin

(Hu et al., 2010), whose mutations are linked to FTD-TDP.

Misregulation of sortilin splicing by reduction in TDP-43 affects

progranulin metabolism (Prudencio et al., 2012), further sug-

gesting that dysfunction of TDP-43 underlies FTD pathogenesis.

Collectively, deregulation of TDP-43 RNA targets supports loss

of nuclear TDP-43 function as a plausible contributor to patho-
genesis after an initiating stress leading to cytoplasmic TDP-43

accumulation.

Mechanism(s) of ALS-Linked FUS/TLS Mutants
FUS Loss of Function in Disease

Like TDP-43, loss of nuclear function of FUS/TLS is also a likely

component of the disease process, as nuclear clearing accom-

panied by cytoplasmic accumulation of FUS/TLS was initially

reported in surviving neurons of patients with NLS mutant-

mediated FUS/TLS (Kwiatkowski et al., 2009; Vance et al.,

2009). Two independent FUS/TLS knockout mouse models

have been generated (Kuroda et al., 2000; Hicks et al., 2000).

Conflicting results from these models have made it unclear

whether FUS/TLS is an essential gene.

FUS/TLS Mutant Gain of Toxicity

No currently published mouse model stably express ALS-linked

mutations in FUS/TLS. However, one study in rats with inducible

expression of human wild-type or R521C mutant of FUS/TLS

reported that postnatal induction (to undetermined levels) in

two independent lines of mutant-expressing rats produced

paralysis and death by 70 days of age, whereas comparable

wild-type human FUS/TLS-expressing rats survived normally

(Huang et al., 2011). These findings support a gain of toxicity

by mutant FUS/TLS, albeit rats overexpressing wild-type FUS/

TLS also develop motor and spatial learning deficits accompa-

nied by ubiquitin aggregation by 1 year of age. It should be noted

that, similar to the case of TDP-43, increased wild-type FUS/TLS

accumulation through homozygous mating in mice is also highly

deleterious, driving early lethality (Mitchell et al., 2013). Addi-

tional mouse and rat models and further studies are needed to

elucidate FUS/TLS-mediated toxicity.

Is TDP-43 and FUS/TLS-Mediated Toxicity a

Non-Cell-Autonomous Process?

An increasing body of evidence has established that cell

types beyond the target neurons whose dysfunction is respon-

sible for the primary phenotypes also contribute to neurode-

generation, a phenomenon known as non-cell-autonomous

toxicity (Garden and La Spada, 2012). Given that TDP-43

and FUS/TLS inclusion can also be found in glia (Mackenzie

et al., 2010a), it is conceivable that glia contribute to disease

pathogenesis. Indeed, induced pluripotent stem cell (iPSC)-

derived astrocytes from patients carrying a familial mutation

in TDP-43 (M337V) showed several abnormalities, including

increased TDP-43 accumulation and altered subcellular

localization (Serio et al., 2013). While these mutant astrocytes

did not produce short-term toxicity to cocultured motor

neurons, driving expression only in astrocytes of the same

TDP-43 mutation (M337V) produced progressive loss of motor

neurons and paralysis in rats (Tong et al., 2013). Thus, it is

highly plausible that TDP-43 (and possibly FUS/TLS as

well) mediated neurodegeneration is a non-cell-autonomous

process.

TDP-43, FUS/TLS, and a Potential Link between Stress
Granules and Protein Inclusion
TDP-43 and FUS/TLS are components of stress granules

(Dewey et al., 2012; Li et al., 2013). The main functions of stress

granules appear to be in temporally repressing general
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translation and storage of mRNAs during stress. Importantly,

stress granules are disassembled when the stressors are

removed (Anderson and Kedersha, 2009).

At least seven independent studies have reported TDP-43 to

be localized within stress granules produced in a wide range of

cell lines with varying stresses, including oxidative, osmotic,

and heat stresses (Ayala et al., 2011a; Colombrita et al., 2009;

Dewey et al., 2011; Freibaum et al., 2010; Liu-Yesucevitz et al.,

2010; McDonald et al., 2011; Meyerowitz et al., 2011). TDP-43

variants with ALS-linked mutations appear to form larger stress

granules with faster kinetics (Dewey et al., 2011; Liu-Yesucevitz

et al., 2010) and this requires the prion-like domain (Bentmann

et al., 2012; Dewey et al., 2011; Liu-Yesucevitz et al., 2010).

Similarly, FUS/TLS is recruited into stress granules (Andersson

et al., 2008) and FUS/TLS with ALS-linked mutations in its NLS

show enhanced propensity to associate with stress granules

(Bosco et al., 2010a; Dormann et al., 2010; Gal et al., 2011; Ito

et al., 2011; Kino et al., 2011). One provocative report claimed

that the prion-like domain of FUS/TLS is both necessary and

sufficient to form stress granules in cultured cells and to form

hydrogels in vitro (Kato et al., 2012). Another report claimed

a completely opposite result, with the C-terminal residues

together with an ALS-linked mutation (P525L), but not the

prion-like domain, required for stress granule formation in cells

(Bentmann et al., 2012). The discrepancy remains unresolved.

Nonetheless, the evidence collectively indicates that associa-

tion of TDP-43 and FUS/TLS into stress granules is a normal

physiological response to stress. A tempting speculation is

that the association of TDP-43 and FUS/TLSwith stress granules

may be an initiating event, which following chronic stress even-

tually leads to irreversible pathological aggregation (Dormann

et al., 2010; Dewey et al., 2012; Li et al., 2013). However, caution

is warranted, as these cell culture experiments used overexpres-

sion of TDP-43 and FUS/TLS and do not recapitulate one key

feature of TDP-43 and FUS/TLS proteionopathies: concomitant

loss of nuclear TDP-43 or FUS/TLS with cytoplasmic inclusions

(Mackenzie et al., 2010a).

TDP-43 is transiently lost from neuronal nuclei with concomi-

tant accumulation at injury sites in two in vivo experiments in

mice using either axotomy or axonal ligation (Moisse et al.,

2009; Sato et al., 2009). Interestingly, mutant TDP-43 showed

a delayed response in returning to the nucleus during recovery

(Swarup et al., 2012). Since current evidence suggests that at

disease end stage TDP-43 and FUS/TLS associate with stress

granules in ALS and FTD patients (Dormann et al., 2010; Liu-

Yesucevitz et al., 2010), future investigation should now focus

on how TDP-43 and FUS/TLS switch from reversible association

into irreversible pathological inclusions, what the relationship is

between this process and the nuclear clearance of TDP-43 and

FUS/TLS, and how the combination of pathological inclusions

and loss of nuclear TDP-43 and FUS/TLS drives disease

progression.

TDP-43, FUS/TLS, and SMN, a Common Pathogenic
Pathway between ALS and Spinal Muscular Atrophy
Spinal muscular atrophy (SMA) is a motor neuron disease

caused by deficiency in the survival motor neuron (SMN) protein

(reviewed in Burghes and Beattie, 2009). SMN is part of a large
422 Neuron 79, August 7, 2013 ª2013 Elsevier Inc.
multiprotein complex that is essential for the biogenesis of spli-

ceosomal-associated small nuclear ribonucleoprotein particles

(snRNPs). SMN complexes are found both in the cytoplasm

and in nuclear bodies called Gems. Loss of nuclear Gems is a

pathological hallmark in SMA. Reduced SMN expression leads

to markedly decreased snRNP assembly and reduced snRNA

levels in mouse models of SMA and in SMA patients, provoking

broad misregulation of RNA splicing.

Recent evidence suggests that perturbation of normal levels

of TDP-43 (Shan et al., 2010; Tsuiji et al., 2013) or FUS/TLS

(Yamazaki et al., 2012) or expression of ALS-linked mutations

in TDP-43 (Yamazaki et al., 2012) and FUS/TLS (Groen et al.,

2013; Yamazaki et al., 2012) leads to reduction of nuclear GEM

bodies, altered U snRNA expression, and axonal defects, likely

through a direct biochemical association between SMN and

TDP-43 (Tsuiji et al., 2013) or FUS/TLS (Groen et al., 2013;

Yamazaki et al., 2012). Moreover, these SMN deficits are also

found in sporadic ALS patients with TDP-43 inclusions (Ishihara

et al., 2013; Tsuiji et al., 2013). Taken together, the collective

evidence supports convergent pathways of pathogenesis in

SMA and ALS, reinforcing the notion that defects in RNA meta-

bolismmay be central mechanistic components in motor neuron

disease.

Repeat Expansion within C9ORF72
Genome-wide association studies (GWASs) of familial ALS

patients in the Finish population, as well as in sporadic ALS,

demonstrated the presence of a major ALS locus on chromo-

some 9p21 (Laaksovirta et al., 2010; Shatunov et al., 2010; Van

Deerlin et al., 2010; van Es et al., 2009). The minimal region link-

ing all the families was then narrowed down to a 232 kb interval

containing only three protein-coding genes (MOBKL2B, IFNK,

and C9ORF72) (Laaksovirta et al., 2010). Rather than the ex-

pected amino acid substitutions in a protein coding region, a

large GGGGCC hexanucleotide repeat expansion (�700–1,600

copies) within a noncoding region of a gene (C9ORF72) was

found to be causative (DeJesus-Hernandez et al., 2011;

Gijselinck et al., 2012; Renton et al., 2011).

Hexanucleotide expansion in C9ORF72 accounts for up to

80% of familial ALS-FTD, 20%–50% of familial ALS, 5%–20%

of sporadic ALS, and 10%–30% of FTD, making this repeat

expansion the most common cause of ALS and FTD (Boeve

et al., 2012; Chiò et al., 2012; Cooper-Knock et al., 2012; Hsiung

et al., 2012; Mahoney et al., 2012; Simón-Sánchez et al., 2012;

Snowden et al., 2012). Clinically, patients with the C9ORF72

repeat expansion have been reported to have a higher incidence

of bulbar-onset ALS, cognitive impairment with earlier disease

onset, and accelerated progression compared with patients

without the expansion (Byrne et al., 2012; Chiò et al., 2012;

Millecamps et al., 2012; Stewart et al., 2012).

Inclusions containing TDP-43 in brain and spinal cord are

prevalent in all patients with the repeat expansion. Additionally,

there is the presence of TDP-43-negative cytoplasmic or

nuclear inclusions containing either p62/SQSTM1 or ubiquilin-2

or both in the cerebellar granular and molecular layers (Brettsch-

neider et al., 2012). Similarly, TDP-43 pathology is absent

from neuronal intranuclear and cytoplasmic inclusions in the

pyramidal cell layers of the hippocampus in patients with
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expansion in C9ORF72 (Al-Sarraj et al., 2011;Murray et al., 2011;

Troakes et al., 2012), suggesting that additional component(s)

other than TDP-43 are present in the inclusions. Cytoplasmic

ubiquilin-2-containing inclusions have also been reported in

the cerebellar granular and hippocampal molecular layers

(Brettschneider et al., 2012).

Pathogenic Mechanisms for the Repeat Expansion in

C9ORF72 Gene

The expanded hexanucleotide repeat in the C9ORF72 gene is

reminiscent ofmultiple prior repeat expansion diseases for which

three different prototypes of pathogenic mechanisms have been

demonstrated: loss of function of the gene containing the repeat

(haploinsufficiency), gain of protein toxicity due to the expression

of protein containing the repeat expansion (mutant protein), and

gain of RNA toxicity due to the production of RNA containing the

repeat (mutant RNA) (La Spada and Taylor, 2010). Additional

toxic mechanisms can result from complementary repeat-con-
taining RNA produced by bidirectional transcription (Moseley

et al., 2006) or repeat associated non-ATG (RAN) translation

(Zu et al., 2011), leading to production, respectively, of potentially

toxic RNA and protein species. For C9ORF72, because the

GGGGCC repeat expansion is located within an alternative non-

coding intron 1, the underlying disease pathogenesis may be

driven by RNA-mediated or RAN translation-dependent toxicity

or haploinsufficiency or any combination of these (Figure 4).

Loss of Function and Gain of Toxicity: Lessons from the

Fragile X Locus and Myotonic Dystrophy

The location of the repeat expansion in intron 1 of C9ORF72

resembles the CGG repeats of the FMR1 (fragile X mental retar-

dation 1) gene, which, depending on the size of the repeats,

yields three different syndromes: fragile X syndrome (>200

repeats), fragile X-associated tremor/ataxia syndrome (50–200

repeats), and premature ovarian insufficiency (50–200 repeats)

(Oostra and Willemsen, 2009). Full expansion causes fragile X
Neuron 79, August 7, 2013 ª2013 Elsevier Inc. 423
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syndrome (FXS) from loss of FMR1 gene function mediated by

hypermethylation of the adjacent FMR1 promoter region and

subsequent transcriptional silencing.

FMR1 carriers with CGG repeats between 50 and 200 develop

fragile X-associated tremor/ataxia syndrome (FXTAS) in which

the repeats are unmethylated but produce intention tremor,

abnormal gait, peripheral neuropathy, and cognitive impairment

(Oostra and Willemsen, 2009). In contrast to transcriptional

silencing in FXS (Tassone et al., 2000), accumulation of FMR1

mRNA in FXTAS is elevated at least 5-fold, presumably because

it is stabilized by binding of hnRNP A2/B1, Pur-a (purine-rich

binding protein-a), Sam68, hnRNP-G, along with CUG-binding

protein 1 (CUG-BP1) and muscleblind (MBNL1), each of which

has been shown either to associate biochemically with the

rCGG repeats or colocalize with rCGG RNA foci (Jin et al.,

2007; Sellier et al., 2010; Sofola et al., 2007). Furthermore, both

Sam68 and hnRNP A2/B1 can be found in the nuclear inclusions

of FXTAS patient neurons (Jin et al., 2007; Sellier et al., 2010).

While the identities of other RNA-binding proteins potentially

trapped in the rCGG foci and the underlying pathogenic

mechanisms remain controversial, it is clear that RNA-mediated

toxicity is a key component of neurodegeneration in FXTAS.

These complications should be borne in mind in considering

whether different repeat sizes within the C9ORF72 gene may

provide divergent symptoms/diseases or different severity of

phenotypes.

A gain-of-RNA-toxicity mechanism for a repeat expansion dis-

ease is best characterized in myotonic dystrophy 1 (DM1), which

is caused by up to 2,500 of CTG repeats in the 30UTR of themyo-

tonic dystrophy protein kinase (DMPK) gene (Lee and Cooper,

2009). Two proteins, CUG-BP1 and muscleblind, were identified

to bind to the CUG repeat-containing RNA (Miller et al., 2000;

Timchenko et al., 1996). Of these two proteins, only muscleblind

shows repeat-length-dependent association and is selectively

sequestered into pathogenic RNA foci (Mankodi et al., 2001).

Nevertheless, misregulation of both muscleblind and CUG-BP1

play roles in DM1 pathogenesis. Indeed, CUG repeats lead to

activation of protein kinase C (PKC), which in turn phosphory-

lates CUG-BP1, whose phosphorylated form has increased

activity from increased protein stability, thereby activating multi-

ple splicing changes toward fetal isoforms (Kuyumcu-Martinez

et al., 2007; Roberts et al., 1997).

Evidence for C9ORF72 Haploinsufficiency

The functionof theC9ORF72geneand itspredictedproteinprod-

uct are unknown. Recent bioinfomatical analysis implies a poten-

tial involvement of the C9ORF72 protein in membrane trafficking

and autophagy (Levine et al., 2013; Zhang et al., 2012), but this

remains to be determined. A 50% reduction of mRNA levels cor-

responding to both short and long mRNA isoforms of C9ORF72

(DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012) has

been reported and is consistentwith partial or complete silencing

of the expanded allele (Figure 4A), although it should be noted

that the reduction of the corresponding C9ORF72 proteins has

not been demonstrated. Antisense oligonucleotide-mediated

reduction of C9ORF72 in zebrafish produces reduced axon

lengths of motor neurons and locomotion deficit (Ciura et al.,

2013), consistent with the notion that partial loss of the

C9ORF72 gene could contribute to disease pathogenesis.
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Evidence for Gain of RNA Toxicity from C9ORF72

Expansion

Intranuclear RNA foci containing the C9ORF72 hexanucleotide

repeat have been reported (DeJesus-Hernandez et al., 2011),

which may trap one or more RNA-binding proteins, thereby in-

hibiting their functions, especially in RNA processing (Figure 4B).

While two RNA-binding proteins, hnRNP-A3 (Mori et al., 2013a)

and Pur-a (Xu et al., 2013), have been reported to bind GGGGCC

repeats in vitro and both were reported to be components of

p62-positive TDP-43-negative inclusions in C9ORF72 patients,

their role in pathogenesis is unproven. Neither has been demon-

strated to localize at RNA foci formed by the hexanucleotide

repeat and the predicted loss of RNA processing function that

would follow from sequestration of hnRNP-A3 and Pur-a has

not been demonstrated in cells and tissues expressing the hex-

anucleotide repeat-containing RNA.

Repeat Non-ATG Translation of C9ORF72 mRNA

Besides the recognizedmodes of RNA toxicity introduced above,

ahighlyunexpectedandpotentially toxicmechanism inC9ORF72

hasbeenuncovered: repeat-associatedRNA-encoded,non-ATG

translation (RAN translation). This phenomenon was originally

discovered in spinocerebellar ataxia type 8 (SCA8), a progres-

sive neurodegenerative disease causedby a trinucleotide expan-

sion in the bidirectionally transcribed SCA8 gene (Zu et al., 2011).

In one direction, the RNA encoding the ataxin 8 (ATXN8) protein

contains an in-frame CAG-expansion that is translated into

polyglutamine. Surprisingly, this RNA is also translated in an

ATG-independent manner in all three reading frames of the

CAG repeat both in vitro and in SCA8 human cerebellum.

Following the SCA8 example, two independent studies have

now reported translation of the C9ORF72 GGGGCC repeat

into polypeptides consisting of repeating di-amino acids:

poly-(glycine-alanine, GA), poly-(glycine-proline, GP), and poly-

(glycine-arginine, GR) (Figure 4C) that form pathological inclu-

sions in neurons (but not astrocytes) of C9ORF72 patients (Ash

et al., 2013; Mori et al., 2013b). Poly-GA is apparently the most

prevalent form (Mori et al., 2013b). Moreover, an antisense

RNA transcript in C9ORF72 patients has also been reported

(Mori et al., 2013b), raising the possibility of two additional dipep-

tide-repeats (poly-PR and poly-PA), which may also be gener-

ated through RAN translation.

More Complexities in Repeat-Mediated Toxicity

If the preceding potential toxicities were not enough, consider-

ation of what is known about SCA8 providesmore potential com-

plexities. As mentioned above, the SCA8 locus is bidirectionally

transcribedwith opposite strand transcription of the CAG repeat,

producing a noncoding RNA containing a CUG repeat expansion

that sequesters muscleblind, leading to splicing changes similar

to those observed in DM1 patients (Daughters et al., 2009;

Moseley et al., 2006). Added to potential RAN translation of

both CAG and CUG repeats, the pathogenic mechanisms

include gain of function at both the protein and RNA levels.

Disruption of Protein Homeostasis in ALS and FTD
Although the chicken-and-egg question persists for whether

protein aggregation per se causes or merely reflects a conse-

quence of neurodegenerative diseases, overwhelming evidence

supports protein degradation deficits in a wide range of
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disorders through disruption of either of the two major protein

clearance pathways: the ubiquitin-proteasome system and

autophagy. This is certainly true for ALS/FTD, as demonstrated

by identification of ALS- and FTD-linked mutations in genes

affecting protein homeostasis, or proteostasis. These genes

include ubiquilin-2 (UBQLN2), p62/SQSTM1 (sequestosome 1),

optineurin (OPTN), vasolin-containing protein (VCP), charged

multivesicular body protein 2B (CHMP2B), vesicle-associated

membrane protein (VAMP)/synatobrevin-associated protein B

(VAPB), and FIG4 (FIG4 homolog, SAC1 lipid phosphatase

domain containing protein) (Figure S2). Among these genes,

ubiquilin-2, p62, optineurin, and VCP are directly involved in pro-

tein degradation, whereas CHMP2B and FIG4 are required for

autophagosome maturation (Figure 5).

ALS-FTD mutation in Ubiquilin-2
The ubiquilin protein family brings polyubiquitinated proteins

to the proteasome for degradation, and ubiquilins also function
in autophagy. The ALS and ALS/dementia-linked mutations

initially identified in UBQLN2 are clustered at or near its

proline-rich region, with most altering a conserved proline

(P497H, P497S, P506T, P509S, P525S) (Deng et al., 2011;

Gellera et al., 2013; Williams et al., 2012). Two additional muta-

tions, S155N and P189T, are located at the N terminus (Daoud

et al., 2012). Experiments in cells transfected to express either

of two ALS-linked mutations in ubiquilin-2 (R497H and P506T)

suggest that that overall protein degradation is impaired (Deng

et al., 2011).

Perhaps not surprisingly, colocalization of ubiquilin-2 and

ubiquitin in pathological inclusions is seen in patients with

UBQLN2 mutations and these inclusions also contain TDP-43,

FUS/TLS, and optineurin (Deng et al., 2011; Williams et al.,

2012), suggesting that an impaired protein clearance pathway

is a pathogenic mechanism (Figure 5B). Furthermore, ubquilin-2

pathology has been reported in a majority of sporadic ALS

(Deng et al., 2011) and hexanucleotide repeat expansion in the
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C9ORF72 genes (Brettschneider et al., 2012). Taken together,

mutations in ubiquilin-2 provide a mechanistic link of the protein

degradation pathway with neurodegeneration.

p62/SQSTM1 Mutations in ALS

Similar to ubiquilin, p62 has been shown to interact with polyubi-

quitinated proteins (Moscat and Diaz-Meco, 2012) and to

interact with LC3, allowing p62 to target polyubiquitinated pro-

teins to the proteasome or autophagy. Therefore, both p62 and

ubiquilin-2 link the ubiquitin-proteasome and autophagy path-

ways (Figures 5B and 5C). Using a candidate gene approach,

sequencing of p62/SQSTM1 in familial and sporadic ALS

patients revealed several polymorphisms/mutations scattered

throughout the coding regions (Fecto et al., 2011; Rubino

et al., 2012; Teyssou et al., 2013), accompanied by TDP-43 inclu-

sions (Teyssou et al., 2013). p62-positive inclusions have also

been reported in neurons and glia of a wide array of other neuro-

degenerative diseases (Brettschneider et al., 2012). Although

how these ALS-associated variants in p62 contribute to patho-

genesis has not been established, autophagy/proteasome

disturbance seems likely to play a role.

ALS Mutations in Optineurin

Optineurin (OPTN) is a 577 amino acid multifunctional protein

that is able to bind both polyubiquitinated proteins and LC3

(Figure 5C). Indeed, optineurin has been proposed as a receptor

for autophagy (Wild et al., 2011). Both nonsense and missense

mutations of optineurin have been identified in ALS, accounting

�3% of familial ALS and �1% of sporadic ALS (Del Bo et al.,

2011; Iida et al., 2012a, 2012b; Maruyama et al., 2010; van

Blitterswijk et al., 2012). One report has identified OPTN-positive

inclusions in patients with OPTN mutation, with TDP-43 inclu-

sions in sporadic ALS and with SOD1-positive inclusions in

patients with SOD1 mutations (Maruyama et al., 2010).

ALS- and FTD-Linked Mutations in Vasolin-Containing

Protein

Mutations in vasolin-containing protein (VCP) were originally

identified as causative of inclusion body myopathy with Paget’s

disease of bone and frontotemporal dementia (IBMFTD)

(Watts et al., 2004) and later in ALS (Johnson et al., 2010).

Some of the same mutations have been found for both IBMFTD

and ALS (Figure S2). VCP interacts with a large number of ubiq-

uitinated proteins to enable degradation or recycling and func-

tions in multiple protein clearance pathways (Figure 5F),

including extracting misfolded proteins from the ER and sorting

of endosomal proteins for proper trafficking. Depletion of VCP

leads to accumulation of immature autophagosomes, similar to

what is observed upon expression of IBMFD-linked mutations

(Ju et al., 2009; Tresse et al., 2010), suggesting that VCP is

required for proper autophagy. Most intriguingly, TDP-43 is

apparently mislocalized to the cytosol upon VCP-mediated auto-

phagic dysfunction (Ju et al., 2009).

FTD- and ALS-Linked Mutations in CHMP2B

Charged multivesicular body protein 2B, or chromatin-modifying

protein 2B (CHMP2B) mutations were first identified in FTD

(termed FTD-3) (Momeni et al., 2006; van der Zee et al., 2008)

and later in ALS (Cox et al., 2010; Parkinson et al., 2006).

CHMP2B is a core component of endosomal sorting complexes

(reviewed in Raiborg and Stenmark, 2009) (Figure 5E). Multiple

studies support mutant CHMP2B-mediated disruption normal
426 Neuron 79, August 7, 2013 ª2013 Elsevier Inc.
endosome-lysosome-autophagy morphology and function

(Han et al., 2012a; Urwin et al., 2010; van der Zee et al., 2008).

Transgenic mice expressing the intron 5-retention mutant of

CHMP2B, but not wild-type CHMP2B, develop progressive

neurological deterioration accompanied by axonal pathology

and early mortality (Ghazi-Noori et al., 2012). Loss of CHMP2B

function, on the other hand, after gene disruption in mice pro-

duces no phenotype (Ghazi-Noori et al., 2012).

ALS Mutations in FIG4

FIG4 encodes a 907 amino acid lipid phosphatase that regu-

lates the abundance of phosphatidyl-inositol-3,5-biphosphate

(PI(3,5)P2). Recessive mutation in FIG4 causes severe tremor,

abnormal gait, degeneration of sensory and motor neurons,

and diluted pigmentation in mice. Compound heterozygote

mutations, in which a loss-of-function allele combineswith a par-

tial loss-of-function mutation, are present in human patients with

Charcot-Marie-Tooth disease (CMT4J) (Chow et al., 2007), as

are rare, heterozygous variants of FIG4 in ALS (Chow et al.,

2009). FIG4 null mice have substantially lowered PI(3,5)P2 levels,

which are normally tightly regulated. Not surprisingly, autophagy

is impaired in the neurons and astrocytes of mice missing FIG4,

with the disturbance of PIPs expected to disrupt formation or

recycling of autolysosomes. It is tempting to speculate that

ALS-linked variants can tip the balance of phosphoinositide pro-

cessing and affect autophagic function (Figure 5D).

ALS Mutations in VAPB

Two ALS-linked mutations in the gene encoding VAMP/VAPB

have been reported (Figure S2) (Chen et al., 2010; Funke et al.,

2010; Millecamps et al., 2010; Nishimura et al., 2004). Expres-

sion of either, but not wild-type, in mammalian cell lines pro-

duced ER fragmentation and cytoplasmic aggregates of mutant

VAPB that also trapped endogenous VAPB (Chen et al., 2010;

Kanekura et al., 2006; Nishimura et al., 2004; Teuling et al.,

2007). Increased levels of wild-type VAPB elicit the unfolded pro-

tein response (UPR) (Figure 5G). Reduction in VAPB attenuates

the UPR, as do ALS-linked mutants (Chen et al., 2010; Kanekura

et al., 2006), probably by interaction with ATF6, one of the three

key molecules in initiating the UPR response (Gkogkas et al.,

2008). Transgenic mice expressing wild-type or mutant VAPB

(P56S) within the nervous system do not, however, develop overt

phenotypes or have reduced survival but do develop cyto-

plasmic accumulation of ubiquitin, p62, and TDP-43 at

18 months of age (Qiu et al., 2013; Tudor et al., 2010). Neverthe-

less, along with ALS-, FTD-, and ALS/FTD-linked mutations in

ubiquilin-2, p62, optineuron, VCP, CHMP2B, and FIG, the

VAPB mutations point to defects in protein clearance as a com-

mon component of pathogenesis.

A surprising additional function of VAPB came from study in

Drosophila of its MSP (major sperm protein) domain (Tsuda

et al., 2008). The MSP domain has been reported to be cleaved

and secreted, while the ALS-linked P56S mutant abolished the

secretion activity and formed ubiquitinated inclusions. Patho-

genicmechanismsmay involveaberrant Ephsignaling.Biochem-

ically, human MSP interacts with EphA4 (Tsuda et al., 2008), a

receptor in the ephrin axonal repellent pathway. Intriguingly,

EphA4 has been reported to be a genetic modifier for modulating

the vulnerability of motor neurons in ALS (Van Hoecke et al.,

2012). How the MSP-like fragment is generated in a
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mammalian system and whether MSP-EphA4 interaction plays a

role in modulating ALS disease course will require further investi-

gation.

SOD1: A Central Component of ALS or an Outlier?
Mutations in the copper/zinc superoxide dismutase 1 (SOD1)

gene account for 20% of familial ALS cases (Rosen et al.,

1993). Mouse models overexpressing ALS-linked mutations in

SOD1 recapitulate most features of ALS pathology, which has

led to the discovery of two critical features of SOD1-mediated

toxicity: (1) mutant SOD1 causes ALS through a gain of toxic

property (or properties), and (2) pathogenesis of the ubiquitously

expressed mutant SOD1 is a non-cell-autonomous process.

This latter insight was established by gene excision from

selected cell types in transgenic mice otherwise expressing

mutant SOD1 ubiquitously, an approach that identified disease

onset to be driven by mutant synthesized within motor neurons

(Boillée et al., 2006; Wang et al., 2009; Yamanaka et al., 2008)

and NG2+ oligodendrocyte precursors (Kang et al., 2013), while

mutant SOD1 synthesized within two additional glial cell types

(astrocytes; Yamanaka et al., 2008; and microglia; Boillée

et al., 2006) are primary determinants of accelerated disease

progression.

A Crucial Controversy: Is SOD1 a Component of

Sporadic Disease?

While ubiquitinated protein aggregates containing SOD1 are a

prominent pathological feature in both familial ALS patients

with SOD1 mutations and in mice expressing ALS-linked muta-

tions in SOD1 (Bruijn et al., 2004), SOD1-containing inclusions

have not been found in most sporadic ALS cases. Nevertheless,

early studies hinted that an age-dependent posttranslational and

nonmutational modification of SOD1 may be able to change the

conformation of wild-type SOD1 into an altered conformation

(Bredesen et al., 1997), suggesting that these modified forms

of wild-type SOD1 could be contributors to sporadic ALS. The

notion that there is a common pathogenic conformation of

wild-type and mutant SOD1 has recently made a comeback.

Several teams have reported that misfolded SOD1 is present in

a portion of sporadic ALS patients (Bosco et al., 2010b; Forsberg

et al., 2010; Pokrishevsky et al., 2012). This issue remains highly

controversial, with other teams failing to detect misfolded SOD1

in sporadic ALS patients using multiple conformation-specific

antibodies (Brotherton et al., 2012; Kerman et al., 2010; Liu

et al., 2009).

SOD1 mutant-expressing astrocytes are toxic to cocultured

normal motor neurons (Di Giorgio et al., 2007, 2008; Haidet-

Phillips et al., 2011; Marchetto et al., 2008; Nagai et al., 2007).

Kaspar and colleagues (Haidet-Phillips et al., 2011) reported

the very surprising finding that astrocytes derived from autopsy

samples from sporadic ALS patients are also toxic to motor neu-

rons. Most provocatively, this team also reported that non-cell-

autonomous toxicity to motor neurons from such sporadic

ALS-derived astrocytes can be reduced by lowering production

of wild-type SOD1, thereby implicating wild-type SOD1 as a

contributing factor in sporadic disease. While replication is

needed, these results highlight non-cell-autonomous compo-

nents in ALS pathogenesis and support therapeutic reduction

of SOD1 expression in sporadic ALS.
Prion-like Spreading for ALS and FTLD

One of the key features of prion diseases is the conformational

conversion of a native state to an infectious, misfolded, and

pathological state of the prion protein. The infectious cycle

comes from the perpetuating conversion of the normal prion pro-

tein into a pathological conformation and spreading to other

cells, a process that has now been demonstrated for neurode-

generative diseases such as Alzheimer’s and Parkinson’s dis-

ease (reviewed in Polymenidou and Cleveland, 2012).

Consistent with a prion-like spread, ALS-linked mutant SOD1

can form fibrils (Chattopadhyay et al., 2008) and mutant SOD1

has been shown to possess prion-like aggregation and

spreading ability in cultured cells (Grad et al., 2011; Münch

et al., 2011), as well as seeding ability using spinal cord homog-

enate from transgenic animals overexpressing mutant SOD1

(Chia et al., 2010) (Figure 6). Remarkably, increased wild-type

SOD1 expression (accompanied by its conversion into an insol-

uble form) is sufficient to accelerate disease course and shorten

survival of SOD1 mutant-expressing mice (Deng et al., 2006),

consistent with a prion-like template-dependent aggregation.

Furthermore, both TDP-43 and FUS/TLS contain prion-like

domains, which may facilitate seeding and aggregation

(Figure 6). Indeed, a recent study reported that intracellular

aggregation of TDP-43 can be triggered in cultured cells by

transduction of fibrillar aggregates prepared in vitro (Furukawa

et al., 2011). More provocatively, insoluble TDP-43 isolated

from brains of ALS or FTLD-TDP patients can trigger prion-like

templating and aggregation of transfected TDP-43 in cultured

cells (Nonaka et al., 2013). In addition, disease-linked mutations

in prion-like domains in hnRNP-A2B1 and hnRNP-A1 increase

their propensity to form self-seeding fibrils and cross-assemble

with wild-type counterparts (Kim et al., 2013). Altogether, along

with recognition that the initial symptoms of ALS are typically

confined to a particular region, followed by an orderly spread

that might be predicted for prion-like propagation, the evidence

suggests that a prion-like seeding and spreading mechanism

could underlie TDP-43 and FUS/TLS-mediated disease.

Feedforward Loops: Converging Disruptions in RNA and
Protein Homeostasis
One of themost devastating features of ALS is the relentless pro-

gression and spread of degeneration. We attempt here to pro-

vide a molecular basis for this phenomenon. The recent discov-

ery of how RNA granules can form through a low-complexity/

prion-like domain in TDP-43, FUS/TLS, and hnRNP A2/B1 (Han

et al., 2012b; Kato et al., 2012) has fueled an attractive hypothe-

sis in which prion-like spreading of aggregated SOD1, TDP-43,

or FUS/TLS could contribute to ALS pathogenesis (Polymenidou

and Cleveland, 2011).

ALS-Linked Mutations in Protein Clearance Pathways

Can Lead to TDP-43 Aggregation

Both TDP-43 and FUS/TLS are intrinsically aggregation prone

in vitro (Johnson et al., 2009; Sun et al., 2011), whichmay predis-

pose them to formation of pathological inclusions through their

prion-like domains (Kato et al., 2012; Han et al., 2012b; Kim

et al., 2013), independent of any proposed progression from

an initiating stress granule complex (Dewey et al., 2012). Not sur-

prisingly, both ubiquitin-proteasome and autophagy pathways
Neuron 79, August 7, 2013 ª2013 Elsevier Inc. 427
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Figure 6. Aggregate Assembly and Propagation in ALS and FTD
Prion-like phenomena in ALS may include SOD1-, TDP-43-, or FUS/TLS-seeded aggregation and cell-to-cell spreading.
(A) TDP-43 and FUS/TLS are both primarily nuclear RNA-binding proteins, whose mutations lead to ALS or FTD. Filled blue boxes on TDP-43 and FUS/TLS
molecules indicate RNA-recognition motifs and the striped blue box on FUS/TLS refers to the zinc finger domain that can also bind RNA.
(B) Cellular stress induces TDP-43 and FUS/TLS incorporation into stress granules, which form through the ordered aggregation of several RNA-binding proteins
complexed with RNA molecules. This physiologic reaction to cellular stress may be an initial trigger for pathogenic inclusion formation since the increased local
protein concentration and RNA scaffolding molecules may facilitate ordered aggregation of TDP-43 and/or FUS/TLS.
(C) Upon chronic cellular stress, defects in stress granule disassembly occurring with aging drive prion-like conformational changes of TDP-43 and FUS/TLS—
facilitated by disease-causing mutations in them and stress granule formation—transform into pathogenic self-perpetuating, irreversible aggregates.
(D) Possible cell-to-cell spread (not yet tested for TDP-43 or FUS/TLS) of prion-like aggregates may underlie (or at least contribute to) disease spread from a focal
initiation.
(E) Self-perpetuating seeding of misfolded, mutant SOD1 has been reported in cell cultures (Grad et al., 2011; Münch et al., 2011). Acquired damage to wild-type
SOD1 may seed similar self-perpetuating aggregates.
(F) Mutant, misfolded SOD1 can inducemisfolding of wild-type SOD1 in a template-directed reaction (Chia et al., 2010; Deng et al., 2006), thereby forming a seed
of aggregated protein.
(G) SOD1 aggregates transfer from cell to cell to initiate misfolding and aggregation of wild-type or mutant SOD1 in neighboring cells (Münch et al., 2011).
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are used for TDP-43 clearance (Brady et al., 2011; Urushitani

et al., 2010; Wang et al., 2010). Mutations or disruption of

many of ALS-linked genes involved in protein homeostasis path-

ways (VCP, ubiquilin-2, p62, and CHMP2B) lead to TDP-43

aggregation.

Downregulation of VCP or expression of disease-linked muta-

tions of VCP generate cytosolic TDP-43 aggregations (Gitcho

et al., 2009; Ju et al., 2009; Ritson et al., 2010), autophagy

defects (Ju et al., 2009), and decreased proteasomal activity

(Gitcho et al., 2009). Similarly, reduction of CHMP2B and

expression of FTD-linked mutations in CHMP2B inhibit the

maturation of autolysosomes, which in turn lead to accumula-

tion of cytosolic TDP-43 aggregates (Filimonenko et al.,
428 Neuron 79, August 7, 2013 ª2013 Elsevier Inc.
2007). Patients with ALS-FTD-linked mutations in ubiliqulin-2,

which appear to inhibit proteasome activity, develop TDP-43

proteinopathy (Deng et al., 2011). Ubiquilin-1 interacts with

TDP-43 and overexpression of ubiquilin-1 can recruit TDP-

43 into cytoplasmic aggregates that colocalize with autopha-

gosomes in cultured cells (Kim et al., 2009). Finally, p62/

sequestosome-1 is misaccumulated in both ALS and FTD

(Seelaar et al., 2007) along with TDP-43 (Tanji et al., 2012), while

increased expression of it reduces TDP-43 aggregates in

cultured cells (Brady et al., 2011). Taken together, these find-

ings indicate that ALS/FTD-linked mutations in genes that are

involved in protein homeostasis can directly contribute to

TDP-43 proteinopathy.
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Except for ubquilin-2 mutations (Deng et al., 2011; Williams

et al., 2012), inclusion of FUS/TLS has not been reported in

response to mutations or disruption of ALS-linked genes

involved in the protein homeostasis pathways. However, as

described above, one class of ALS-linked mutations disrupts

nuclear localization signals, producing higher cytosolic accumu-

lation of FUS/TLS (Dormann et al., 2010; Bosco et al., 2010a).

This relocalization of FUS/TLS may be a primary cause for initi-

ating FUS/TLS proteinopathies.

TDP-43 Regulates Expression of ALS-Linked Genes

Involved in Protein Clearance

TDP-43 affects levels of RNAs that encode proteins involved in

protein homeostasis, including CHMP2B, FIG4, OPTN, VAPB,

and VCP (Polymenidou et al., 2011). Additionally, TDP-43 has

been shown to bind the pre-mRNA encoding the autophagy-

related 7 (Atg7) protein essential for autophagy, with reduction

of TDP-43 downregulating Atg7, thereby impairing autophagy

(Bose et al., 2011). It is worth mentioning that mice lacking

Atg5 and Atg7 in the nervous system exhibit neurodegeneration

(Hara et al., 2006; Komatsu et al., 2006), strongly suggesting—

not unexpectedly—that autophagy is essential for normal

neuronal function. Altogether, these results suggest an intricate

regulatory network in which TDP-43 can affect the expression

of the very gene(s) that participate in TDP-43 clearance,

providing an additional mechanism of regulating TDP-43 abun-

dance (the other being the autoregulation of TDP-43 by binding

to its own mRNA), while TDP-43 also indirectly affects global

protein clearance pathways by regulating the expression of

key components in autophagy.

Similarly, FUS/TLS binds to the mRNAs encoding optineurin

(Lagier-Tourenne et al., 2012; Colombrita et al., 2012),

ubiquilin-2 (Lagier-Tourenne et al., 2012; Hoell et al., 2011),

VAPB (Lagier-Tourenne et al., 2012; Hoell et al., 2011), and

VCP (Lagier-Tourenne et al., 2012; Colombrita et al., 2012; Hoell

et al., 2011), although reduction of FUS/TLS in the mouse CNS

does not significantly alter their expression levels (Lagier-

Tourenne et al., 2012). In a motoneuron-like cell line, FUS/TLS

has been argued to be preferentially bound to cytoplasmic

mRNAs that are involved in the ubiquitin-proteasome pathway,

in particular the cullin-RING E3 ubiquitin ligases (Colombrita

et al., 2012). Perhaps most importantly, the endoplasmic reticu-

lum or ubiquitin-proteasome pathways are overrepresented in

the mRNA targets bound by ALS-linked mutations in FUS/TLS

(Hoell et al., 2011). Altogether, the evidence strongly suggests

that, similar to the case for TDP-43, mutation or nuclear loss of

function of FUS/TLS affects protein clearance pathways by regu-

lating expression levels of genes in the pathway.

Unifying Underlying Pathogenic Pathways in ALS
and FTD
We propose that converging pathogenic mechanisms underly-

ing ALS and FTD are disruption of both RNA and protein

homeostasis and disturbed homeostasis that produces a feed-

forward loop that drives disease progression (Figure 7). In this

model, the initiating event that triggers disease initiation can

occur at multiple points in either protein or RNA homeostasis

pathways, including genetic mutations that predispose one

pathway to be more error prone or other nongenetic
factors, such as aging, in which proteostasis decline is well

documented.

More provocatively, prion-domain-containing RNA-binding

proteins may also be predisposed to self-promoting aggregation

and spread, which could explain the seemingly sporadic

nature of many instances of both diseases. Subsequent disease

progression may be amplified by failure in cross-regulation

among multiple proteins/genes, with several ALS-linked genes

(including VCP, p62/SQSTM1, and CHMP2B) required for TDP-

43 degradation, whereas TDP-43 regulates expression of VCP

and CHMP2B. In addition, not only does TDP-43 bind to its

own mRNA, which is essential for its autoregulation, but TDP-

43 also binds to several ALS-linked genes involved in RNA

homeostasis, including Ang1 (angiogenin), Atxn2 (ataxin-2),

and FUS/TLS. Similar mechanisms could exist for FUS/TLS.

Once initiated, errors in RNA and protein homeostasis accu-

mulate, which eventually lead to failure in autoregulation, dereg-

ulation of ALS-linked genes, proteotoxic stress, and loss of

neuroprotection. The failure to maintain proper protein and

RNA homeostasis is highly likely to drive a feedforward cycle,

leading to a snowballing effect perturbating many aspects

of protein and RNA function. Subsequent propagation and

spreading of TDP-43 and FUS/TLS aggregates into neighboring

cells could drive spread from a focal initiation site.

Prospects for Therapies in ALS/FTD
Following Jean-Martin Charcot’s initial description of ALS, he

made the grim statement regarding therapy, ‘‘The prognosis,

up to the present, is of the gloomiest. There does not exist, so

far as I am aware, a single example of a case where, the group

of symptoms just described having existed, recovery followed.’’

Sadly, 140 years has passed and ALS remains the same devas-

tating and lethal disease. There is currently only one FDA-

approved drug, riluzole, an inhibitor of presynaptic glutamate

release, which only extends the survival of the patients for

2–3months. In the past two decades, many potential therapeutic

interventions have been attempted but none have been success-

ful (reviewed in Zinman and Cudkowicz, 2011).

Therapies by Lowering Synthesis of a Toxic Species

For disease from mutant SOD1 (and if wild-type SOD1 is

confirmed to be a contributor to sporadic disease), therapy

lowering the synthesis of either would be directly on disease

mechanism. Indeed, reducing SOD1 expression has been re-

ported to slow disease progression of transgenic mice and rats

expressing human mutant SOD1 (Ralph et al., 2005; Raoul

et al., 2005; Smith et al., 2006). A further glimmer of hope has

emerged from a successful phase I safety trial using antisense

oligonucleotides against SOD1 in patients carrying mutant

SOD1 (Miller et al., 2013). A similar strategy targeting the poten-

tially toxic RNA species or RAN translation of it can be envisioned

for the more frequent instances of disease from hexanucleotide

expansion in C9ORF72.

Therapy Design by Improving Protein Homeostasis

Several lines of evidence indicate that broad defects in protein

homeostasis may contribute to ALS pathogenesis: (1) all ALS

patients have one of the following protein inclusions in affected

motor neurons: TDP-43, FUS/TLS, or SOD1; (2) ALS-linked

mutations are identified in several genes involved in ER stress,
Neuron 79, August 7, 2013 ª2013 Elsevier Inc. 429
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Figure 7. Molecular Interplay of TDP-43
with Other ALS- and FTD-Linked Genes in
Protein and RNA Homeostasis
Proposed pathogenic mechanisms in TDP-43-
mediated neurodegeneration converge onto dis-
ruption of protein and RNA homeostasis. Proteins
involved in protein and RNA homeostasis are
labeled as gray and green, respectively. Top:
normal functions of ALS/FTD-linked proteins. (1)
Three ALS-linked genes (VCP, p62, and CHMP2B)
are required for proper turnover of TDP-43, which
is degraded both by the proteasome and by
autophagy. (2) TDP-43 regulates the expression of
the same ALS-linked genes that are required for its
own degradation as well as (3) a key autophagy
induction protein, ATG7. TDP-43 also regulates
two other RNA-binding proteins linked to ALS
(FUS/TLS and Ataxin-2). TDP-43, FUS/TLS, and
Ataxin-2 form RNA protein granules that are
degraded through (4) autophagy/granulophagy.
Thus, TDP-43 governs both protein and RNA
homeostasis and (5) its own level is tightly main-
tained. Bottom: disrupted protein and RNA
homeostasis that fuels a feedforward loop driving
disease progression. An initiating event that trig-
gers disease initiation can occur at multiple points
in either protein or RNA homeostasis pathways,
including genetic mutations that predispose one
pathway to be more error prone or other nonge-
netic factors, such as aging. The well-documented
(1) decline in proteostasis during aging may lead
to elevated accumulation of TDP-43. Subse-
quently, (2) the genes that are controlled by TDP-
43 become deregulated, including (3) loss of
expression of ATG7, which in turn reduces (4)
autophagy (and granulophagy). The net result of
this produces (5) disrupted autoregulation of TDP-
43 with an increased cytoplasmic concentration of
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of it, followed by propagation and spread. These
gain-of-toxic properties induce overproduction of
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further loss of TDP-43 function. Similar scenarios
could operate for prion-like domain-containing
RNA-binding proteins, such as FUS/TLS and
hnRNP A2/B1.
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autophagy, and the ubiquitin-proteasome pathway; (3) ALS-

linked mutations in ubiquilin-2, CHMP2B, and VCP can lead to

TDP-43 aggregation; (4) dysfunctions in ERAD and autophagy

are observed in mouse models expressing mutant SOD1; and

(5) autophagy appears to be activated and upregulated in motor

neurons of sporadic ALS patients.

It is not clear how a decline in general protein degradation

machinery might cause aggregation of specific proteins in

different neurodegenerative diseases. However, it is conceiv-

able that increasing (or delaying age-dependent decline in)

proteostasis could, in principle, prevent or slow down the for-

mation of protein inclusions—or at least accumulation of some

or all of the toxic protein species. Initial hints that this

approach could be beneficial came from report of modest

delay in disease progression following treatment of a very

small number of mice with arimoclomol, an inducer of heat

shock proteins HSP70 and HSP90 (Kieran et al., 2004). Phase

2/3 clinical trials are currently underway for this approach.
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Dampening the UPR by deleting a downstream X-box-binding

protein (XBP-1) was reported to provide a modest survival

benefit (�20 days) to a small cohort (n = 7) of SOD1G86R

mice, but the apparent benefit was disappointingly found

only in female mice (Hetz et al., 2009). Finally, pharmacological

activation of autophagy was reported in another small cohort

of mice (n = 10 per drug treatment) to improve cognitive and

motor phenotype in male mice overexpressing wild-type

TDP-43 (Wang et al., 2012).

Independent replications of the above experiments with larger

cohorts that are powered to provide statistical significance—and

extended to multiple ALS/FTD mouse models—are now needed

to validate the therapeutic potential of these approaches. More-

over, enthusiasm for the rationale of autophagy induction must

be tempered by recognition that simply activating the autophagy

pathway may cause cytosolic depletion of essential organelles

(reviewed in Wong and Cuervo, 2010), and it should be recog-

nized that autophagy is a double-edged sword.



Neuron

Review
Concluding Remarks
With recent advances in identifying major common genetic

causes and the identities of major components in the patholog-

ical aggregates for ALS and FTD, perturbation of both RNA and

protein homeostasis is a convergent molecular feature with a

probable feedforward loop driving the failure in maintaining

RNA and protein homeostasis as a central underlying mecha-

nism for the relentless deterioration of neurons. There is probably

no silver bullet for curing all sporadic cases. However, with

knowledge of genetic causes and molecular players, it is the

most exciting time for discovery in ALS and FTD. Much remains

still to be learned, bearing in mind Charcot’s charge from 140

years ago, ‘‘Let us keep searching. It is indeed the best method

of finding and perhaps thanks to our efforts, the verdict we will

give such a patient (with ALS) tomorrow will not be the same

we must give this man today.’’
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