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a b s t r a c t

There is now strong evidence of progressive neuropathological processes in bipolar disorder (BD). On
this basis, the current understanding of the neurobiology of BD has shifted from an initial focus on
monoamines, subsequently including evidence of changes in intracellular second messenger systems
and more recently to, incorporating changes in inflammatory cytokines, corticosteroids, neurotrophins,
mitochondrial energy generation, oxidative stress and neurogenesis into a more comprehensive model
capable of explaining some of the clinical features of BD. These features include progressive shortening of
the inter-episode interval with each recurrence, occurring in consort with reduced probability of treat-
ment response as the illness progresses. To this end, emerging data shows that these biomarkers may
differ between early and late stages of BD in parallel with stage-related structural and neurocognitive
xidative stress
arly intervention

alterations. This understanding facilitates identification of rational therapeutic targets, and the devel-
opment of novel treatment classes. Additionally, these pathways provide a cogent explanation for the
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. Introduction

Despite Kraepelin (1921) first noting that manic-depressive ill-
ess has an accelerating and progressive course, the molecular

oundations for this disease progression are only just beginning to
e explained. By contrast, there is a wealth of clinical data sup-
orting this pattern of an accelerating and progressive disease
ourse which includes the observation of a progressive reduction
n the inter-episode duration with recurrence (Kraepelin, 1921;
is et al., 1980; Roy-Byrne et al., 1985; Kessing et al., 1998).
ncreasing episode number is linked to a reduction in the likeli-
ood of response to appropriate treatment, both biological such
s lithium (Franchini et al., 1999; Swann et al., 1999), and psy-
hological such as CBT (Scott et al., 2006). People with more
ecurrent bipolar disorder (BD) tend to have higher rates of comor-
idity, especially substance abuse (Brady and Goldberg, 1996),
ore difficulty with social adjustment (Matza et al., 2005) and

ncreased risk of hospitalisation (Goldberg and Ernst, 2002), sui-
ide (Hawton et al., 2005) and forensic complications (Conus and
cGorry, 2002). These clinical observations suggest that BD is at

east in part a neuroprogressive disorder where there is the poten-
ial for a potentially modifiable pathophysiological process to occur
ver the longitudinal trajectory of the illness and that part of this
europrogressive pathophysiology is associated with inadequately
ompensated metabolic stress. The end point of such neuropro-
ressive changes would be tissue damage, structural changes and
unctional sequelae that are the neural substrate of mood regula-
ion, that has the potential to increase the risk of further recurrence
nd reduce the potential of treatment response (Waddington et al.,
998). It is likely that this process is present or accelerates during
cute exacerbations of the illness, and this paper will present data
hat this may be particularly true of manic relapse.

. The structural basis and functional sequelae of
europrogression in bipolar disorder

The observed clinical progression of BD is reflected by grow-
ng evidence of stage-related structural brain changes in affected

ndividuals. Structural abnormalities are not consistently found
t illness onset, but more commonly found in chronic and more
ecurrent forms of the illness. An example being, ventricular
nlargement has been reported in individuals with recurrent ill-
ess that was not apparent in a cohort with during first-episode of
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

mania (Strakowski et al., 2002). These observations that supports
the notion of neuroprogressive changes over time in BD.

Progressive changes in brain structure are also supported by
observations of a progressive loss of grey matter thickness asso-
ciated with chronicity in people with BD (Lyoo et al., 2006). The
cerebellar vermal V3 was reduced in individuals who have had mul-
tiple episodes, compared to both controls and those measured at
first-episode (DelBello et al., 1999).

Bora et al. (2010) recently conducted a meta-analyses of the
voxel-based morphometry (VBM) studies of gray matter in BD.
Specifically, they compared gray matter volumes of 660 BD patients
and 770 healthy controls and found that gray matter reduction in
left rostral anterior cingulate cortex (ACC) and right frontoinsu-
lar cortex was associated with BD. Importantly, a longer duration
of illness was associated with increased gray matter in a cluster
that included basal ganglia, subgenual ACC and amygdala. Lithium
treatment was associated with enlargement of ACC gray matter vol-
umes, which overlapped with the region where gray matter was
reduced in BD. These authors concluded that the most robust grey
matter reductions in BD occur in anterior limbic regions, which
may be related to the executive control and emotional processing
abnormalities seen in this patient population.

Importantly, whilst there is growing evidence to suggest there
are progressive changes in the CNS of individuals with BD, neu-
roanatomical changes are present early in the onset of the disorder.
For example, males experiencing their first-episode of psychosis,
displayed increased thickness in the right subcallosal limbic
anterior cingulate cortex (Fornito et al., 2009). These authors inter-
preted this finding to suggest that relative hypertrophy in brain
regions critical for regulating HPA axis activation (i.e., the anterior
cingulate cortex, amygdala and pituitary) are associated with an
elevated stress response around the time of psychosis onset that
ultimately results in volumetric shrinkage in later illness stages.
There is however novel data showing that “ultra high risk” individ-
ual who had not yet manifested a first-episode of threshold mania
already show amygdala and insular volume reductions but no dif-
ferences in lateral ventricular volumes (Bechdolf et al., unpublished
data). This has led to the suggestion that there may be early neu-
rodevelopmentally mediated CNS changes (Fornito et al., 2007), as

well as ongoing neuroprogressive changes, that are associated with
the pathophysiology of BD.

Significantly, there is now some data to suggest that some
abnormalities in CNS development that underpin BD may have a
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enetic basis. This comes from a study that showed that individu-
ls with BD that had a Val66Met brain derived neurotrophic factor
BDNF) genotype had significantly lower anterior cingulate vol-
mes than those a homozygous Val/Val genotype (Matsuo et al.,
009).

At the symptom level, cognitive impairment is also a core feature
f the disorder; these deficits include impaired response inhibition,
ifficulties with set shifting and sustained attention (Bora et al.,
009), as well as slowed information processing (Malhi et al., 2007;
artinez-Aran et al., 2007). It is now well recognised that these

ognitive impairments make a major contribution to the disability
ssociated with the disorder (Malhi et al., 2007; Martinez-Aran et
l., 2007). Unfortunately, there is very scarce cognitive data regard-
ng longitudinal studies in BD, however, the available evidence
uggests at least some of the cognitive impairment is related to
he number of episodes that a person has had (El-Badri et al., 2001;
obinson and Ferrier, 2006); suggesting that like neuroanatomical
hanges, symptom severity shows progressive changes in individu-
ls with BD. This notion is supported by recent findings that people
ith BD who have had a first or second episode displayed minimal
ivergence from controls in their cognitive functioning (Lopez et al.,
008). In contrast, individuals who had longstanding illness mani-
ested significant reductions on most measures of cognition when
ompared to both controls and early-episode bipolar patients.

. The biochemical foundation of neuroprogression

While Kraepelin first described the progressive nature of the dis-
rder, Post (1992) laid the foundations of the current understanding
f the progressive nature of the pathophysiology of the disorder
Post, 1992). Post based his argument on experiments using kin-
ling in animals as a model for seizures where it was shown that

f exogenous agents induced enough seizures, changes in the CNS
ould occur that induced spontaneous endogenous seizures in

he experimental animal. Importantly, kindling can be induced by
epeated long-term stimuli. Post argued that this kindling model
howed that long-term multiple CNS challenges could act to per-
anently alter neuronal activity and this was a non-homologous

aradigm for BD in which multiple episodes could permanent alter
euronal activity in people with the disorder. This slow alteration
f neuronal activity would underlie the progressive changes now
bserved in neuroimaging studies and the changes in symptom
everity. Post argues that as with kindling, changes in neuronal
ctivity are underpinned by changes in levels of gene expression
nd that such changes in gene expression could underpin the higher
elapse liability and deteriorating treatment response in chronic
D (Post, 1992). More recently, Post suggested that some of the
etrimental outcomes in BD may be due to a failure of endoge-
ous compensatory mechanisms that would normally minimise
he impact of endogenous insults on CNS function (Post, 2007).

Kapczinski et al. (2008b) have extended this model, incorporat-
ng the allostatic load hypothesis. This describes a process whereby
he combined effects of genetic load, life stressors, and aggravat-
ng factors such as substance use, combine to lead to a cumulative
rocess of “wear and tear”. These features combine with the innate
europathology of the disorder to further disrupt those functional
rain circuits responsible for mood modulation and cognition. This

s thought to result in the structural changes and the associated
ognitive decline observed, and the circuits that are thus further
isrupted result in the decreasing responsiveness to therapy that

ccurs with chronicity. This neuroprogressive process additionally
nderlies the increasing vulnerability to future episodes of illness.

It is now becoming apparent that the biochemical founda-
ion of neuroprogression is multifactorial and interactive, not
nly between pathways, but via stress sensitisation from the
vioral Reviews 35 (2011) 804–817

environment. Core components include the dopaminergic sys-
tem, inflammatory cytokines, oxidative stress, mitochondrial and
endoplasmic reticulum stress, and neurotrophins including BDNF
(Wadee et al., 2002; Post, 2007; Berk et al., 2008c). There is also
evidence for the involvement of epigenetic changes, particularly
histone and DNA methylation leading to long-acting effects on gene
expression (Grayson et al., 2010).

4. Mechanisms of neuroprogression

4.1. Dopaminergic system

Several lines of pharmacological evidence support the notion
that excessive dopamine neurotransmission is involved in the
development of manic symptoms (Berk et al., 2007c). Agents that
drive dopamine, such as amphetamine, are amongst the best
models of mania, whilst dopamine D2 antagonists (Chengappa et
al., 2004; Berk and Dodd, 2005; Malhi et al., 2005) are robustly
anti-manic (Frey et al., 2006a,b). When considering the poten-
tial for dopamine to affect CNS function it is significant that as
well as increasing dopaminergic activity, increased dopamine lev-
els are an important source of oxidative stress in the brain, due
to redox potential of dopamine (Rees et al., 2007). In addition,
there is now data to suggest that antipsychotic drugs may pro-
tect against oxidative stress (Bai et al., 2002). Mechanistically,
dopamine may be metabolized via monoamine oxidase with result-
ing production of H2O2 and dihydroxyphenylacetic acid (Maker
et al., 1981; Berman and Hastings, 1999), or can go through non-
enzymatic hydroxylation in the presence of Fe2+ and H2O2 leading
to the formation of 6-hydroxydopamine (6-OHDA) (Graham et al.,
1978). Both pathways have the potential to cause cellular dysfunc-
tion if oxidative status is imbalanced. 6-OHDA-mediated toxicity
includes mitochondrial complex I inhibition (Rees et al., 2007)
endoplasmic reticulum stress (Berman and Hastings, 1999) and
activation of glycogen synthase kinase-3 (GSK-3�) (Obata, 2002).
6-hydroxydopamine is intrinsically unstable and is converted to p-
quinone that in turn can activate the caspase-8 pathway ultimately
resulting in apoptosis (Stokes et al., 1999). However, the enzyme
glutathione S-transferase confers neuroprotection as it promotes
the conjugation of glutathione and p-quinone to form a stable end
product that does not enhance overall toxicity. As glutathione is
the primary antioxidant defense in the brain, the reaction with p-
quinone results in a depletion this antioxidant and in turn leaves
the cell more vulnerable to oxidation (Grima et al., 2003).

4.2. Glutamatergic system

Similar to dopamine, the glutamatergic system has also been
implicated in the pathophyisology of bipolar disorder. Mood stabi-
lizers, such as lamotrigine, have been shown to modulate glutamate
levels and this may be involved in their therapeutic value (Krystal
et al., 2002). A review of MRS studies has shown increases in glu-
tamate levels, most commonly in the anterior cingulate cortex and
prefrontal cortex, that appear to be related to illness state (Yuksel
and Ongur, 2010). There are reductions in glutamine/glutamate
levels following treatment, which correlate with symptom sever-
ity, further implicating a role of glutamatergic dysfunction in the
underlying pathology of bipolar disorder (Frye et al., 2007; Yoon
et al., 2009). Furthermore, while in its infancy, there is support
for genetic mutations, centred around the glutamate pathway, that

may be implicated in bipolar disorder (Cherlyn et al., 2010).

Glutamate plays an important role in the mediation of oxidative
balance. Increased glutamate levels may result in excitotoxicity,
mediated by reactive species production, following calcium influx.
Elevated intracellular calcium is a persistent finding in bipolar
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isorder, both basal levels, as well as increases stimulated by
opaminergic (Berk et al., 1994), serotonergic (Berk et al., 1995;
lein and Berk, 2000) and glutamatergic transmission (Berk et al.,
000; Plein and Berk, 2001). Modulation of glutamatergic pathways
ay indeed regulate calcium influx thus preventing cellular dam-

ge. Intravenous ketamine has been studied as a model of NMDA
eceptor antagonist, with rapid antidepressant effects in prelim-
nary studies (Diazgranados et al., 2010). Its psychomimetic side
ffects, however, limit its widespread clinical use, and it will prob-
bly remain an interesting research tool (Machado-Vieira et al.,
009). Nevertheless, it should be probably noted as a cautionary
ale that hypofunction of glutamatergic transmission might also
ontribute to oxidative stress, and NMDA-R antagonists cause a
ignificant additional increase in reactive oxygen species (Zuo et
l., 2007).

Glutamate is also one of the three amino acids responsible for
he production of the most ubiquitous antioxidant in the brain, glu-
athione, and disruptions in the glutamate pathway may impact on
lutathione levels. The role of the glutamatergic system in inflam-
ation is discussed in the next section.

.3. Inflammation

Inflammation is a condition characterized by cytokine cascades,
ellular immune responses, increased levels of acute phase pro-
eins and complement factors. Interleukin-1� (IL-1�) and tumor
ecrosis factor-� (TNF�) are the primary inflammatory mediators
hat activate nuclear factor �B (NF�B), which in turn activates the
roduction of cytokines, such as IL-6 and IL-8, and T-cell derived
ytokines, such as interferon-� (IFN�) (Gordon and Martinez,
010). IL-1�, IL-6 and TNF�, in turn, induce the production of acute
hase proteins, such as haptoglobin and C-reactive protein (CRP)
Maes, 1993). Inflammation is accompanied by counter inflamma-
ory responses, which dampen the primary inflammatory response,
.g., increased levels of the IL-1 receptor antagonist (IL-1RA). There
s increasing evidence suggesting that chronic, mild inflamma-
ory processes in the periphery and the brain (neuroinflammation)
re involved in the pathophysiology of BD. BD is accompa-
ied by moderately increased plasma levels of pro-inflammatory
ytokines, such as interleukin-IL-6 and tumor necrosis factor-�;
nd increased IL-1�, NK�B and IL-1RA protein and mRNA levels in
ost-mortem frontal cortex of bipolar patients (Maes et al., 1995;
rtiz-Dominguez et al., 2007; Drexhage et al., 2010; Rao et al.,
010). Also, increased acute phase protein levels, including hap-
oglobin and CRP (Maes et al., 1997; Dickerson et al., 2007); and
omplement factors, such as higher plasma C3C or C4 concentra-
ions are associated with BD (Maes et al., 1997; Wadee et al., 2002).

Depression commonly occurs in illnesses associated with
nflammation, such as coronary artery disease, lupus and rheuma-
oid arthritis (Goldstein et al., 2009). Interestingly, the infusion
f pro-inflammatory cytokines is perhaps the best experimental
uman model of depression, and elevated levels of cytokines are
nown to be associated with both depression and mania (Wadee
t al., 2002). Recently Goldstein et al. (2009) reviewed the litera-
ure and found 27 articles concerning inflammation and BD that
uggested BD and inflammation are linked through shared genetic
olymorphisms and gene expression. This link is further evidenced
y altered cytokine levels during symptomatic (i.e., mania and
epression) and asymptomatic intervals of the illness (Goldstein
t al., 2009). This corroborates the previous hypothesis that inflam-
atory mediators could be related to the episode-related cognitive
ecline in BD (Brietzke and Kapczinski, 2008). Levels of tryptophan
nd kynuerine-dependent tryptophan index have been shown to
e decreased in bipolar mania (Myint et al., 2007). Furthermore,

ncreased kynurenine was found in post-mortem investigation
f the anterior cingulate cortex in BD, which corresponded with
vioral Reviews 35 (2011) 804–817 807

increased density, and intensity of tryptophan 2,3-dioxygenase
positive glial cells (Miller et al., 2006). While it has been pro-
posed that kynurenic acid may be neuroprotective (Foster et al.,
1984), metabolites of the tryptophan/kynurenic pathway have
been shown to have neurotoxic properties (Smith et al., 2007) and
increases in the kynurenine pathway may be linked to inflamma-
tion in BD.

Certain components of the inflammatory process may be state
dependant. In mania, elevation of IL-6 resolves with clinical remis-
sion, while TNF-� does not appear to change with remission (Kim
et al., 2007b). In depression, the baseline production of TNF-�
is significantly increased, whereas TNF levels are reduced during
treatment in the responder subgroup only (Lanquillon et al., 2000).
Reynolds et al. (2004) also showed that recombinant TNF infusions
in rats obliterate the improved performance caused by desipramine
in forced swim tests (Reynolds et al., 2004). These data take on
increased significance given recent finding show increased levels
of transmembrane TNF-� (tm-TNF) in the cortex of individuals with
depression (Dean et al., 2009). Taken together, these data provide
evidence that changes in levels of TNF-� in the CNS are associ-
ated with mood symptoms in humans. Importantly, tmTNF-� is
the target molecule for drugs developed to have peripheral anti-
inflammatory activity action, and there is early data that suggest
that these drugs may act as antidepressants (Tyring et al., 2006).
Conversely, it has been shown that the antidepressant venlafaxine
decreases pro-inflammatory markers in blood of depressed indi-
viduals (Piletz et al., 2008). Together, these finding suggest that
tmTNF-� may offer a potential therapeutic target to moderate CNS
inflammatory process and the symptoms of mood disorders.

There is further data implicating inflammatory pathways in the
pathophysiology of BD. For example, an association of the -511C/T
polymorphism of IL-1� with grey matter deficits in bipolar patients
has been reported (Papiol et al., 2008). This is supported by evidence
showing increased IL-1� (and MyD88 which modulates IL-1 bind-
ing) levels in both protein and mRNA from post-mortem frontal
cortex samples (Rao et al., 2010). There is also evidence for HPA
axis activation associated with increased IL-1� levels in the dis-
ease and by intracerebroventricular infusion (Connor and Leonard,
1998). It has been hypothesized that some mediators of inflamma-
tion are related to neuroprogression in BD (Brietzke and Kapczinski,
2008; Brietzke et al., 2009a,b). This posit is based on the findings
that inflammatory cytokines and chemokines are activated during
depression and even more prominently in acute mania. Moreover,
these changes are not present during euthymia and therefore, it has
been hypothesized that inflammatory mediators could be related
to the episode-related cognitive decline in BD. In this regard there is
preliminary evidence of a stage-related impact on cytokines (Berk
et al., 2007a) because the pro-inflammatory cytokines IL-6 and TNF-
� were elevated in both early and late stage disorder, whereas, the
anti-inflammatory cytokine IL-10 was increased only in the early
stage of the disorder (Kauer-Sant’Anna et al., 2009). Notably, TNF-
�, while elevated throughout the course, was higher later in the
disorder suggesting the inflammatory state is more perturbed later
in the course of the disorder. This might be a result of either pro-
gression of the primary underlying process, or a consequence of
failure of adaptive homeostatic mechanisms occurring as part of
neuroprogression.

When considering the possible role for oxidative stress and
inflammatory process in BD it is important to note that some mood
stabilizers, like lithium, valproate (VPA), carbamazepine, and lam-
otrigine, have been shown to suppress (brain) cyclooxygenase-2

and prostaglandin PGE2 (Bosetti et al., 2002; Bazinet et al., 2006;
Lee et al., 2008; Goldstein et al., 2009). Lithium and VPA may also
decrease the activation or production of nuclear factor kappaB
(Ichiyama et al., 2000; Rao et al., 2007). All these outcomes would
be viewed as protecting against oxidative stress/inflammatory pro-
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esses. The selective COX-2 blocker, celecoxib, displays potential
fficacy in the treatment of BD (Nery et al., 2008). Statins, which
ave intrinsic anti-inflammatory properties, appear to be associ-
ted with lowered risks of mood disorders in community studies
Pasco et al., 2010) and in cohorts of individuals with cardiac dis-
rders (Stafford and Berk, in press).

At present there are limited suggestions as to the mechanism
y which changes in inflammatory pathways could induce the
ymptoms of BD. However, it is of interest that in peripheral tis-
ue inflammation has been shown to reduce levels of muscarinic

2 receptor (Fryer and Jacoby, 1993). Moreover, it has also been
hown that increasing levels of TNF-� reduces the expression of
hat receptor (Haddad et al., 1996). This leads to the intriguing
ossibility that the increased levels of TNF-� in the cortex, as has
een shown in subjects with major depressive disorder (Dean et al.,
009), could be implicated in the decrease in levels of muscarinic
2 receptors that have been reported in the cortex of subjects with
ajor depressive disorders and BD (Gibbons et al., 2009). Given

he recently established link between the muscarinic M2 receptor
nd human cognition (Jones et al., 2004) the ability of inflamma-
ory mechanisms to regulate the expression of this receptor and
he decreased levels of this receptor in the cortex of subjects with

ood disorders provides a mechansim by which changes in inflam-
atory pathways could cause the cognitive deficits associated with

uch disorders.
Inflammation also impacts other transmitter systems. The pres-

nce of a proinflammatory state activates the tryptophan- and
erotonin-degrading enzyme indoleamine 2,3-dioxygenase (IDO),
eading to increased consumption of tryptophan. Stimulation of
DO and kynurenine monooxygenase by pro-inflammatory states
urther results in the production of tryptophan catabolites. This

ay cause lowered mitochondrial energy metabolism, the gen-
ration of free radicals and lipid peroxidation, and an increase
n neuroexcitatory and neurotoxic effects that may lead to neu-
odegenerative effects. The increased consumption of serotonin
nd its precursor tryptophan via activation of IDO might also
xplain the reduced availability of serotonergic neurotransmis-
ion in MD (Muller and Schwarz, 2007). Tryptophan catabolites,
uch as quinolinic acid potently agonize the N-methyl-D-aspartate
NMDA)-receptor causing neurotoxic effects through receptor
ver-activation (Stone and Perkins, 1981; Schwarcz et al., 1983).
oreover, quinolinic acid inhibits glutamate uptake that causes

levated glutamate concentrations (Tavares et al., 2002). In depres-
ion, activation of IDO not only causes production of detrimental
ryptophan catabolites, but also depletes plasma tryptophan, thus
ecreasing brain serotonin turnover (Maes et al., 1999). This path-
ay may also play a role in acute mania (Myint et al., 2007).

This relationship between monoamines and cytokines may
e bi-directional; the release of monoamine neurotransmitters,
articularly noradrenaline, provides tonic sympathetic control
n cytokine production and hence on the balance of pro-
nflammatory/anti-inflammatory cytokines. In an animal model of
epression, lipopolysaccharide induced TNF-alpha response was
ignificantly higher in reserpine-treated mice and this response
as reduced by desipramine disruption of noradrenaline reup-

ake (Szelenyi and Vizi, 2007). The cholinergic system, implicated
n mood regulation similarly interacts with the immune system.
holinergic receptors such as the alpha7 nicotinic acetylcholine
eceptors modulate pro-inflammatory cytokine synthesis (Wang et
l., 2009a), and the cholinergic anti-inflammatory pathway inhibits
ytokine releases in models of acute inflammatory disease (Li et al.,

010). The glutamatergic system has been implicated with neu-
onal excitotoxicity. Raised levels of glutamate have been observed
ith neuronal death in neurodegenerative diseases (Zou et al.,

010). Glutamate is cleared by astrocytes, where glutamate is con-
erted to glutamine (Choi et al., 1987). Glutamate clearance may
vioral Reviews 35 (2011) 804–817

be reduced by an interaction between inflammatory cytokines and
astrocytes (Zou et al., 2010).

A further biomarker of interest is leptin, which has a critical
primary role in obesity. Obesity itself is a risk factor for depression
(Solin et al., 1997). Elevated levels of leptin have been shown to
be a risk factor for depression in prospective studies (Pasco et al.,
2008a), and leptin has significant effects in modulation of immune
processes (Fernandez-Riejos et al., 2010).

While these direct effects of inflammation on intracellular
and extracellular signalling are essential to our understanding of
how the immunological system interacts with behaviour, there is
another general effect of inflammation that must be considered,
that of dysregulated energy generation and its accompanying effect
upon the accumulation of oxidative stress.

4.4. Oxidative stress and mitochondrial dysfunction

Many lines of evidence link BD to a fundamental abnormality in
oxidative energy generation (Kato, 2007). Brain energy generation
is increased in mania, and decreased in depression, a critical finding
with high clinical face validity (Baxter et al., 1985), and there is cor-
responding evidence of an increased basal metabolic rate in mania
and a higher VO2 max, independent of calorific intake (Caliyurt and
Altiay, 2009). Mitochondria are intracellular organelles that play a
crucial role in adenosine triphophatase (ATP) production and also
serve as calcium buffers and regulators of apoptosis (Fattal et al.,
2007; Stuchebrukhov, 2009). During the “hopping” of electrons
along the mitochondrial electron transport chain (ETC), single elec-
trons sometimes escape and result in a single electron reduction of
molecular oxygen to form a superoxide anion (O2

•−), especially in
complex I (NADH: ubiquinone oxidoreductase) (Green et al., 2004).

Mitochondrial dysfunction in BD is further suggested by
impaired brain energy metabolism, high rates of comorbidity of
BD with mitochondrial diseases, the effects of mood stabilizers
on mitochondria, increased mitochondrial DNA deletion in the
neural tissue of BD patients and the association of mitochondrial
DNA mutations/polymorphisms with BD (Kim et al., 2007a; Shao
et al., 2008; Berger et al., 2010). Moreover, in a study of the human
transcriptome in the cortex of subjects with BD and schizophrenia
it is significant that up-regulation of the expression of a number
of mitochondrial genes differentiated medication-free BD from
control subjects and subjects with schizophrenia (Iwamoto et
al., 2005). Somewhat contrasting to these findings is the finding
that down-regulation of mitochondrial gene expression in the
hippocampus differentiates BD from schizophrenia (Konradi et
al., 2004). However, both studies agree that changes in mitochon-
drial gene expression appear to be a critical component of the
pathophysiology of BD.

Whilst it is still not totally clear how changes in mitochon-
drial gene expression could cause BD, it has been proposed that
mitochondrial DNA mutations or polymorphisms result in altered
mitochondrial Ca2+ regulation (Kato, 2007). Elevated basal intra-
cellular calcium is documented in individuals with BD (Berk et al.,
1994). Increased glutamate receptor-mediated increases in calcium
are also present, that ultimately alters neuroplasticity and may con-
tribute to the excitotoxic processes reported in BD (Berk et al., 2000;
Kato, 2007).

More focussed studies have recently reported a reduction in
the activity of complex I of the mitochondrial ETC in prefrontal
post-mortem brain tissue in BD, but not schizophrenia or major
depression (Andreazza, 2009). In terms of mitochondrial dysfunc-

tion, there is evidence in BD of altered expression of subunits from
mitochondrial ETC complex I (Konradi et al., 2004; Sun et al., 2006).
Furthering these findings, Cheng et al. (2006), using genome-wide
linkage scans, suggested linkage of chromosome 19p13 in BD where
the majority of complex I subunits genes are located (Cheng et al.,
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006). Given the mitochondrial hypothesis of BD, it is of consid-
rable interest that lithium increases the activity of mitochondrial
omplexes I/II and II/III in human brain tissue (Maurer et al., 2009).

The reactive oxygen species (ROS) generated along the ETC are
etoxified by antioxidant enzymes. When mitochondrial and cyto-
lasmic antioxidant systems are overwhelmed by elevated levels
f ROS damage can occur to DNA, lipids (cell and organelle mem-
ranes) and proteins (receptors, transcription factors and enzymes)
Lenaz et al., 2000).

Alterations in antioxidant enzymes have been reported in BD.
or example, Andreazza et al. (2007) found that superoxide dismu-
ase activity is increased during the manic and depressed phases
f BD, but not in euthymia (Andreazza et al., 2007). This is cor-
oborated in part by Machado-Vieira et al. (2007) who reported
ncreased activity of SOD in unmedicated manic BD patients

Machado-Vieira et al., 2007a). Catalase activity was decreased in
uthymic patients (Andreazza et al., 2007) and increased in unmed-
cated manic patients (Machado-Vieira et al., 2007a). Interestingly,
reating BD using the glutathione precursor and free radical scav-
nger, N-acetyl cysteine (NAC) reduces depressive symptoms and

ig. 1. Potential contributing pathways involved in bipolar disorder. To date a multitude o
hese include alterations in dopamine, glutamate metabolism and inflammation potenti
ell membrane damage and protein aggregation. (1) Increased dopamine release leads to a
xidase (MAO) or suffer auto-oxidation by reacting with iron (Fe2+). Dopamine reaction wi
t may react with Fe2+ generating one of the most reactive free radical, the hydroxyl (OH−

f the dopamine produces 6-hidrydopamine and p-quinone that, respectively, might inhi
lectron transport chain dysfunction will in turn produce more ROS and consequent oxidat
nd IL-6 might induce activation of apoptosis process trough caspase activation or augme
xidative stress in BD is the activation of NMDA receptor trough glutamate. Its activatio
itrosative damage to DNA, proteins and lipids. Oxidative and nitrosative damage can pos
situation where oxidative defences are already vulnerable.
vioral Reviews 35 (2011) 804–817 809

improves functioning and quality of life (Berk et al., 2007b). There is
additionally data that there are stage-dependent changes in oxida-
tive parameters. The activity glutathione reductase, and GST are
increased in late stage patients compared to early stage patients
and controls (Andreazza et al., 2009). This stage-related change in
oxidative biology may form part of the progressive failure of com-
pensatory mechanisms over time, and may in part underlie the
phenomenology of the staging process.

In contrast, studies have shown increased lipid peroxidation
occurring as a result of uncompensated oxidative stress that is
present independent of the phase of the illness (Andreazza et al.,
2007; Machado-Vieira et al., 2007a). In addition, increased levels
of lipid peroxidation were found in the cingulate cortex of patients
with BD (Wang et al., 2009b). It is important to emphasize that
oxidative damage to membrane phospholipids leading to alteration

in fluidity, may induce cell death (Mahadik et al., 2001). Accumula-
tion of oxidative damage is thought to lead to neuronal cell death by
apoptosis or as a consequence of aggregation of oxidized proteins,
which may result in impairment of mood stabilizing mechanisms
(Fig. 1).

f potential contributing factors implicated in bipolar disorder have been identified.
ally leading to mitochondrial dysfunction and consequent increasing in apoptosis,
ugment the metabolization process. Dopamine can be metabolized via monoamine
th MAO leads to produce reactive oxygen species (ROS), peroxide hydrogen (H2O2).
), which can induce oxidation of DNA, protein and lipids. The autoxidation by Fe2+

bit mitochondrial electron transport chain or activate caspase-8. (2) Mitochondrial
ion of biomolecules. (3) Activation of pro-inflammatory receptor, such as TNF-alpha
nt the nitric oxide (NO) production. (4) Other possible pathway that increases the
n will increase the calcium influx and consequent NO production, which leads to
sible induce to membrane damage, protein aggregation and apoptosis initiation, in
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regulating the processes of growth, regeneration and the rescue of
brain cells that may be at risk of damage or even death (Berger et
al., 2007). Hence, there are a number of targets for neuroprotec-
tion, and understanding the different pathways involved may open
a range of potential therapeutic targets (Table 1).

Table 1
Potential therapeutic agents useful as neuroprotective factors and the targeted
pathways.

Pathway Potential therapeutic agent

Blocking of excitotoxicity NMDA receptor antagonists
Induction of anti-apoptotic Lithium or atypical
10 M. Berk et al. / Neuroscience and Bi

.5. Neurotrophins

Neurotrophins such as BDNF, bcl-2, and vascular endothelial
rowth factor (VEGF) play a key role in neuronal survival and pro-
iferation. Alterations in neurotrophins are well documented in BD
Kim et al., 2009) and treatments can alter neurotrophin levels,
or example lithium induces bcl-2 expression in neurons (Sassi
t al., 2002) and increases VEGF expression by astrocytes by a
SK-3 dependent pathway (Guo et al., 2009). There are reported
ssociations between BDNF gene polymorphisms and BD (Lohoff
t al., 2005; Vincze et al., 2008; Matsuo et al., 2009; Xu et al.,
010).

Decreased BDNF is reported in acute episodes of mania and
epression and these changes have been shown to correlate to
he severity of episodes (Cunha et al., 2006; Machado-Vieira et al.,
007b; Fernandes et al., 2009). Acute mood episodes have been
hown be associated with decreased BDNF levels both in medi-
ated (Cunha et al., 2006) and unmedicated patients (de Oliveira
t al., 2009). This seems to support the notion that the main fac-
or related to lower BDNF levels in depression and mania is the
resence of symptoms, not medication status. Further, in a recent
tudy Tramontina et al. (2009) showed that manic patients who
esponded to treatment are likely to experience a sharp increase
n their serum BDNF after the resolution of the acute episode
Tramontina et al., 2009). This data supports the notion that BDNF
erum levels are a reliable marker of the activity of BD, although
here may be more proximal correlates of disease activity and the
elationship between inflammation and BDNF levels complicates
he picture. Of note, other neurotrophins have shown similar pat-
erns in acute mood episodes (Rosa et al., 2006; Walz et al., 2007,
009).

Reduced serum BDNF levels may be related to decreased lev-
ls of this neurotrophin in the brain, supporting the notion that
art of the neuroprogression in BD may be related to a decrease

n BDNF levels in acute episodes (Kapczinski et al., 2008a) with
cumulative effect as the disorder progresses (Kapczinski et al.,

008b). Supporting a stage-dependant change in neurochemistry
n BD, Kauer-Sant’Anna et al. (2009) has shown that levels of
DNF appear to be normal in the early stages of the disorder in
uthymic subjects, and decrease only in the latter stages (Kauer-
ant’Anna et al., 2009). As such, one possibility is that serum
DNF displays both state changes during acute illness and slower

hanges that accompany neuroprogression. This finding is again
oncordant with Post’s theory that there is a failure of com-
ensatory mechanisms with neuroprogression in BD (Post, 2007)
Scheme 1).

Scheme 1.
vioral Reviews 35 (2011) 804–817

4.6. Epigenetic mechanisms

Tsankova et al. (2006) found that repeated stress in mice could
increase histone H3K27 methylation in the hippocampus with sup-
pressive effects upon the BDNF gene promoter region. Interestingly,
this effect was reversed by imipramine (Tsankova et al., 2006).
The study of epigenetic mechanisms in BD is in its early stages;
however it provides a strong candidate mechanism for how kin-
dling effects and treatment resistance may occur. Kato et al. (2005)
have suggested that epigenetic mechanism may underlie some of
the discordance between monozygotic twins with BD (Kato et al.,
2005). There is some evidence that treatment may have effects
on epigenetics. Valproate has been shown to inhibit the activ-
ity of histone deacetylases, ultimately resulting in decreased DNA
methylation of the reelin promoter (Chen et al., 2002). There is sim-
ilar evidence suggesting that like VPA, there may be epigenetic
changes potentially relevant to BD following lithium treatment.
Lithium and VPA both inhibit glycogen synthase kinase-3 (GSK-3)
and histone deacetylase, which may further activate the promoter
IV of BDNF (Yasuda et al., 2009).

5. Neuroprotection

Neuroprotection may be a viable and realistic goal in treating
BD. There are two types of pathological processes amenable to
intervention. Firstly, normal physiological processes that happen in
excess, for example excitotoxicity, pruning or excessive apoptotic
activity. Secondly, the failure of trophic processes, such as reduced
neurogenesis, senescence of progenitor cell generation and differ-
entiation can also be targeted. Such an approach would involve
factors such as bcl-2 or
BDNF, GDNF, NT-3 and VEGF

antipsychotics

Inhibition of key enzymes such
as the ‘apoptosis
executioners’ caspases 3, 6, 7

Lithium, eicosapentaenoic acid

Stabilization of mitochondrial
cell membranes

Valproate

Direct inhibition of cell death
signalling pathways by
blocking direct death
pathways and preventing
the activation of caspase 8
mediated cell death
pathways

TNF-inhibitors

Augmentation of major radical
scavengers such as
glutathione

N-acetyl cysteine

Scavenging ROS produced in
the mitochondria during
beta-oxidation

Coenzyme Q10 and lipoic acid

Inhibition of NFKB Curcuma, fluoxetine, and mood
stabilizers

Blocking GSK-3 Mood stabilizers
Blocking COX-2 NSAIDS
Inflammatory and oxidative

pathways
Statins

Epigenetic modification Valproate, Lithium
Synaptogenesis Erythropoetin
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. Neuroprotective effects of known bipolar agents

One of the conundrums in BD is that many of the agents that are
seful in managing the disorder at first glance appear to share few
roperties. However, it is now known that established mood stabi-

izers impact the pathways and mechanisms that are associated
ith neuroprogression in BD. For instance, lamotrigine, lithium

nd VPA reduce oxidative stress (Cui et al., 2007; Eren et al., 2007;
im et al., 2007a; Ng et al., 2008) and atypical antipsychotics also
educe oxidative stress, not only via dopamine antagonism (Berk
t al., 2007c), but also via direct effects on oxidative defences
Fig. 2). Given this, it is likely that the glutathione precursor, N-
cetyl cysteine (NAC) that prevents oxidative damage and has
een shown to be efficacious in the treatment of BD (Berk et al.,
008a), may also have neuroprotective properties (Fig. 2). Similarly,

ithium, VPA, lamotrigine, carbamazepine and atypical antipsy-
hotics such as quetiapine share an effect of increasing BDNF,

Fig. 2) although these effects may be via secondary mechanisms
Bai et al., 2003; Martinowich et al., 2007; Chang et al., 2009). Fur-
her, when stimulated with lipopolysaccharide, monocytes from
on-lithium treated bipolar patients showed trends towards low

L-1� and high IL-6 production resulting in a significant difference

ig. 2. Cellular loci of action of known and novel agents. (1) Production of neurotrophin
n exacerbations of BD. One of the targets of action for valproate, lithium and quetiapine
hat boost Bcl-2 expression. (2) Glycogen synthase kinase-3 (GSK-3) is part of the surviv
esponse element binding protein (CREB), by phosphorylation, resulting in a decrease in th
lay an important role in this pathway by suppressing GSK-3 activity, thereby facilitatin

, which can protect against reactive oxygen species production. (4) N-acetyl cysteine m
alproate can stabilize mitochondrial cell membranes, also promoting a protection again

SOD) and catalase is increased in untreated manic and depressive episodes, suggesting a
recursor for glutathione (GSH) that is essential to prevent the oxidative damage to biom
vioral Reviews 35 (2011) 804–817 811

in the ratio of IL-1� to IL-6. Treatment with lithium reversed these
changes, thus restoring the aberrant ratio (Knijff et al., 2007).

The protein bcl-2 has a key anti-apoptotic role and promotes
cell survival. Mood stabilizers have been shown to increase bcl-
2 levels in animal studies (Chen et al., 1999; Manji et al., 2000;
Chang et al., 2009) and atypical antipsychotics have also been
shown to increase bcl-2 levels (Bai et al., 2004). Lithium impacts
on GSK-3, by directly inhibiting GSK-3� and -3� activity (Chalecka-
Franaszek and Chuang, 1999; Manji and Lenox, 2000). VPA has been
shown to suppress GSK-3 (Chen et al., 1999). There is, however,
no evidence that other mood stabilizers, such as carbamazepine
or lamotrigine, suppress GSK-3. GSK-3� is a component of the
cell survival-promoting signalling pathway, which plays a critical
role in multiple cellular processes, including metabolism, prolif-
eration, differentiation, axogenesis and synaptogenesis (Gould et
al., 2006). GSK-3 inhibits the transcription factors B-catenin and
cyclic AMP response element binding protein (CREB), by phospho-

rylation, resulting in a decrease in the transcription of important
genes involved in neuroprotection pathways (Gould et al., 2006;
Boer et al., 2008). A number of studies have found that lithium not
only directly inhibits GSK-3� activity, but also enhances inhibition
of GSK-3� activity by the kinase Akt, which in turn promotes the

s, such as BDNF, and anti-apoptotic factor Bcl-2 have been shown to be reduced
are BDNF, by increased it expression. Valproate and lithium also have properties

al signalling pathway, activate GSK-3 inhibits the transcription factors cyclic AMP
e transcription of important genes involved in neuroprotection pathways. Lithium,
g CREB activation. (3) Lithium might increases activity of mitochondrial complex
ay reduce oxidative stress via protecting mitochondria against oxidative damage.
st oxidative stress. (5) The activity of antioxidant enzymes superoxide dismutase
n increased free radical production in these illness. (6) N-acetyl cysteine acts as a
olecules.
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ccumulation of �-catenin (Chalecka-Franaszek and Chuang, 1999;
rimes and Jope, 2001).

Mood stabilizers protect against excitotoxic apoptosis. Specifi-
ally, lithium has also been shown to increase N-acetyl aspartate, a
arker of neuronal viability (Malhi et al., 2002; Malhi and Yatham,

007; Forester et al., 2008), as well as grey matter volume in people
ith BD (Moore et al., 2000a,b). Similarly, atypical antipsychotics
ave been shown to increase neocortical grey matter in the disorder
Nakamura et al., 2007).

Atypical agents have impacts on many of these pathways.
lozapine and quetiapine alter the expression of key genes in mito-
hondrial pathways (Ji et al., 2009), and quetiapine appears to
educe oxidative stress in in vitro models, as well as reduce intra-
ellular calcium, a component of the excitotoxic cascade. In in vitro
tudies, quetiapine and persopirone, but not ziprasidone reduce
he TNF-� response to interferon gamma stimulation (Bian et al.,
008). Data from the CATIE study in schizophrenia suggests that
ome atypical agents, particularly olanzapine, are associated with a
eduction in inflammatory markers (Meyer et al., 2009). Quetiapine
ncreases BDNF expression in rat neocortex (Park et al., 2006), and
everses restraint stress induced reduction in hippocampal neuro-
enesis (Luo et al., 2005).

. Novel neuroprotective strategies

.1. N-acetyl cysteine

N-acetyl cysteine (NAC) is not only a precursor to the pri-
ary free radical scavenger, glutathione, but in addition has
any other biological effects including increasing glutamate in

he nucleus accumbens and anti-inflammatory properties (Dodd
t al., 2008). NAC additionally enhances neuronal differentiation
f mouse embryonic stem cells, and has been shown to enhance
he extension of neuritogenesis (Qian and Yang, 2009). Similarly, it
ncreases neuronal survival and the number of regenerating neu-
ons after nerve graft (Welin et al., 2009). Intriguingly, NAC reverses
itochondrial toxicity. For instance, menadione, a mitochondrial

oxin that induces apoptosis through increased peroxide and hence
xidative stress, adversely affects mitochondrial function because
t induces collapse of the mitochondrial inner transmembrane
otential and a decrease in inner membrane mass. This toxicity

s reversed by NAC (Laux and Nel, 2001).
N-acetyl cysteine has been shown to modulate glutamate-

ystine exchange and have beneficial effects in addiction where
oth oxidative stress and alterations in glutamate neurotransmis-
ion are present (Grant et al., 2007; LaRowe et al., 2007; Mardikian
t al., 2007). NAC prevents the delayed adverse consequences of
renatal inflammation. For example, lipopolysaccharide-induced
renatal inflammation is attenuated by NAC. This inflammatory
rocess reduces glutathione, increases reactive oxygen species and
s a consequence, inhibits oligodendroglial cell development and
yelination (Lante et al., 2007; Paintlia et al., 2008a,b). Increased

evels of the pro-inflammatory cytokine IL-6 further increase lev-
ls of ROS (Behrens et al., 2008). Given the role of glutamatergic,
xidative and inflammatory pathways it is interesting to note that
AC appears to have some activity across these mechanisms.

Concordant with the accepted role of neurogenesis in depres-
ion, NAC shows antidepressant effects in the forced swim test, the
enchmark screening test for antidepressant properties (Ferreira

t al., 2008). In a proof-of-concept placebo-controlled design, NAC
educed depression and improved functioning and quality of life
ith large effect sizes (Berk et al., 2008a). It is therefore a poten-

ial neuroprotective candidate, with trials in the earliest stages of
he disorder, with cognitive and structural endpoints both clinically
nd theoretically warranted.
vioral Reviews 35 (2011) 804–817

7.2. Anti-inflammatory medications

Celecoxib, an anti-inflammatory COX-2 inhibitor has been stud-
ied in depressive or mixed episodes of BD using a double blind,
randomized, placebo-controlled design. In this 6-week pilot RCT,
treatment with celecoxib was associated with lower depression
scores after 1 week compared to placebo. This suggests a potential
antidepressant effect of COX inhibitors (Nery et al., 2008). Further,
in schizophrenia, there is a suggestion that aspirin, with similar
anti-inflammatory properties, may reduce the core symptoms of
the disorder which, given the overlapping biomarker data in mood
and psychotic disorders, is an intriguing lead (Laan et al., 2010).

Aspirin has established anti-inflammatory effects. In a study
of 70 people with depression, aspirin together with fluoxetine
conferred a greater reduction of oxidative stress parameters than
fluoxetine monotherapy (Galecki et al., 2009). In a stroke model,
aspirin has demonstrated neuroprotective effects (Kim et al.,
2010). Aspirin has antidepressant properties in preclinical mod-
els (Brunello et al., 2006), and accelerates antidepressant effects.
Clinically, aspirin has been suggested to shorten the onset of action
of antidepressants (Mendlewicz et al., 2006). There are however
negative epidemiological data on the link between aspirin and
depression risk (Almeida et al., 2010). Of interest, a recent study has
shown that in schizophrenia that aspirin reduces core symptoms
of the disorder. Given the overlapping biomarker data in mood and
psychotic disorders, this is an intriguing lead (Laan et al., 2010).

7.3. Omega-3 fatty acids

There is preliminary evidence for a role of omega-3 fatty acids
in BD. As with major depression, seafood consumption has been
inversely associated with prevalence rates of BD in epidemio-
logical studies (Parker et al., 2006). There may be a correlation
between decreased omega-3 consumption and increased preva-
lence of mood disorders. However, Jacka et al. (2010a,b) showed
that fish consumption per se, not omega-3 fatty acid consump-
tion was related to depression risk, suggesting the importance of
whole diet rather than individual nutrients (Jacka et al., 2010b).
This is possibly linked to the effect of eicopentaenoic acid (EPA)
and docosahexaenenoic acid (DHA) on certain aspects of physi-
ology that have been seen as key in BD. Both EPA and DHA have
been shown to reduce pro-inflammatory cytokines and increase
BDNF (Ross et al., 2007), as well as increasing glutathione (Berger
et al., 2008), possibly countering relevant peripheral changes in
BD (Kapczinski et al., 2008a, 2010; Brietzke et al., 2009a; Kauer-
Sant’Anna et al., 2009). Oxidative stress may preferentially deplete
key polyunsaturated lipids, potentially interacting with dietary
insufficiency (Jacka et al., 2010a,b) and result in further vulnerabil-
ity to illness. In schizophrenia, Amminger et al. (2010) have shown
that omega-3 supplementation may reduce the rate of transition of
high-risk individuals to a first-episode of illness (Amminger et al.,
2010). In addition, depletion of key lipids including trans-vaccenic
acid and nervonic acid, may both predict transition of at-risk indi-
viduals to illness, as well as treatment response.

Clinical studies conducted so far have been diverse and of vary-
ing quality (Montgomery and Richardson, 2008). Heterogeneity
includes sample size, fatty acid used (EPA or DHA), dosage and dura-
tion of follow-up. Taken as a whole, however, the studies indicate
beneficial effects of omega-3 for relieving depressive symptoms.

Importantly, their relapse prevention effects apparently remain
untested (Turnbull et al., 2008). One further interesting finding of
recent systematic reviews is the possibility that omega-3 fatty acids
may have greater efficacy for mood disorders than in schizophre-
nia, where the effects in established disorder are less robust (Ross
et al., 2007).
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.4. Statins

Statins have potent anti-inflammatory and anti-oxidative prop-
rties that are thought to contribute to their efficacy in protection
gainst cardiovascular disease, which shares many of the path-
ays discussed in this paper. There is epidemiological evidence

hat they may reduce the risk of the development of depression.
asco et al. (2010) showed that in a community cohort individu-
ls who were on statin therapy had an almost 80% reduced risk of
eveloping a de novo episode of depression over a 10-year follow-
p period (Pasco et al., 2010). Confirming this, Stafford and Berk
in press) showed a comparable reduction in risk for the develop-

ent of depression over a 9-month follow-up period in a cohort
f individuals who had an intervention for cardiovascular disease
n those prescribed statins compared to individuals who did not
eceive statins (Stafford and Berk, in press).

. Implications

In summary, we are now beginning to understand the underly-
ng processes of neuroprogression in BD that include inflammatory
ytokines, neurotrophins, mitochondrial dysfunction, oxidative
tress and epigenetic effects. These parameters appear to be sen-
itive to the stage of illness, and indeed are the first biochemical
ndicators of the staging model in BD (McGorry et al., 2006; Berk
t al., 2007d). While the interactions of these systems are begin-
ing to be elucidated it remains difficult to say which mechanisms
re the most important in the cascade of metabolic, immunological
nd neurochemical changes associated with BD disease progres-
ion. However, the importance of these mechanisms and their clear
ssociation with long the long-term course of BD cannot be under-
tated. It is also becoming clearer that these pathways do not match
he currently accepted DSM-IV classification, but instead appear
o be shared across mood and psychotic disorders. However, at
his early stage, the data do not suggest an alternate nosological
lane of cleavage, although they do indicate that phenomenology
s currently defined does not meaningfully link to these patho-
hysiological pathways. This suggests that treatment targets based
n these pathways in one disorder may well be valid candidates
n disorders with overlapping biomarker data, as has transpired in
he case of antipsychotic treatment in BD. This further suggests that
n acceleration of effort into conceptualising and validating novel
iomarkers is potentially a high reward strategy.

This conceptualisation of the pathways to neuroprogression has
number of theoretical implications. Firstly, it is broadly con-

ordant with the notion of allostatic load, originally proposed
y McEwen (McEwen, 2004), and adapted to BD by Kapczinski
Kapczinski et al., 2008b). It implies that medical comorbidity and
ubstance use interacts with the core neuroprogressive processes,
o impact cumulatively on shared risk pathways. This is concor-
ant with unpublished data that agents such as NAC, which are
hought to act primarily on these neuroprogressive pathways, are

ore efficacious in individuals with those medical comorbidities
cardiovascular, endocrine) that also impact on inflammatory and
xidative pathways (Magalhaes et al., unpublished data). It is note-
orthy that inflammatory and oxidative pathways are common

isk factors for psychiatric disorders and those common medial dis-
rders that are highly comorbid with psychiatric disorders such
s cardiovascular disorders and osteoporosis (Pasco et al., 2006,
008b; Williams et al., 2009). Elevated levels of markers such as
RP have been shown to be risk factors for depression, osteoporo-

is and cardiovascular disease in prospective designs. Addressing
hese shared vulnerability factors may theoretically contribute to
econdary prevention of these comorbid medical disorders.

A further implication of this relates to predictors of response. To
ate, the field has lacked reliable biological predictors of response
vioral Reviews 35 (2011) 804–817 813

(Dodd and Berk, 2004). The study of aspirin in schizophrenia sug-
gested that efficacy was greater in those with higher levels of
inflammation (Laan et al., 2010). These embryonic data suggest that
markers of oxidative or inflammatory stress may be predictors of
response to therapies active on those pathways. The nascent field of
theragnostics in psychiatry, predictors of treatment response and
individualised medicine, may find support in this arena (Pene et al.,
2009). This further reinforces the importance of biomarker research
and its linkage to clinical trials.

9. Conclusions

The pathways explored in his review appear to be common tar-
gets of the otherwise diverse and seemingly unrelated treatments
(lithium, valproate, atypical antipsychotics) that share efficacy
in the treatment of BD. To date, it has been difficult to explain
the shared efficacy of these superficially diverse therapies. These
emerging data suggest that these common targets may be more
central to the biological foundation of the disorder than hith-
erto appreciated. They additionally open the door to hypothesis
driven rational drug development. These findings are concordant
with the idea that neuroprotection is a viable therapeutic strategy,
especially in the early stages of illness (Berger et al., 2007). This
further supports the construct of early intervention, which sug-
gests that the initiation of optimal therapy early in the trajectory
of the disorder may reduce the disability associated with disease
progression, and may modify the course of the disorder into a
less malignant and more treatment-responsive pattern (Berk et al.,
2008b).
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