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ABSTRACT

Down syndrome (DS) is a complex developmental disorder with diverse pathologies that affect
multiple tissues andorgan systems. Clearmechanistic description of how trisomyof chromosome21
gives rise to most DS pathologies is currently lacking and is limited to a few examples of dosage-
sensitive trisomic genes with large phenotypic effects. The recent advent of cellular reprogramming
technology offers a promising way forward, by allowing derivation of patient-derived human cell
types in vitro. We present general strategies that integrate genomics technologies and induced
pluripotent stem cells to identify molecular networks driving different aspects of DS pathogenesis
and describe experimental approaches to validate the causal requirement of candidate network
defects for particular cellular phenotypes. This overall approach shouldbe applicable tomanypoorly
understood complex human genetic diseases, whose pathogenic mechanisms might involve the
combined effects of many genes. STEM CELLS TRANSLATIONAL MEDICINE 2013;2:175–184

INTRODUCTION

Down syndrome (DS) is a complex disease caused
by trisomy of human chromosome 21 (HSA21)
that occurs in about 1 in 750 live births [1]. In
most cases the extra HSA21 is the result of a ma-
ternal segregation error in meiosis I [2, 3] or, in
rare cases, Robertsonian translocations (4%) or
mosaicism (1%) [4]. Individuals with DS exhibit a
large range of pathologies, some of which are
highly penetrant, such as cognitive defects, pre-
mature Alzheimer disease and aging, and dys-
morphic facial features; as well as pathologies
that are highly variable, such as cardiac defects,
which occur in 50% of cases [5]. DS individuals
also have an increased risk of duodenal stenosis
(250 times normal risk), increased incidence of
Hirschsprung disease and leukemia (30 times
and 300 times normal risk, respectively), and re-
duced incidence of solid tumors [5].

Although HSA21 is considered to host ap-
proximately 350 protein-coding genes, for many
years the prevailing hypothesis was that DS was
the result of dosage sensitivity of only a small
subset of these genes, which are clustered to-
gether in one chromosomal region denoted the
Down syndrome critical region (DSCR) [6–11].
However, chromosomal engineering experi-
ments in mice [12] and, more recently, geno-
type-phenotype analysis of human individuals

with partial trisomy for regions of HSA21 [13, 14]
have now demonstrated that the complete DSCR
is not necessary or sufficient for most DS pheno-
types. Rather, these analyses have revealed re-
gions linked to individual DS phenotypes that are
distributed over large regions of chromosome
21, suggesting that there are potentially many
causative genes in DS [13] (summarized in Fig. 1).

The new zeitgeist proposes that DS pheno-
types arise from a complex interplay of these
many causative genes, which can exert patholog-
ical influence at various stages of development
or maturity [15]. Under this hypothesis, it has
been suggested that the genetic mechanisms re-
sponsible for DS phenotypes can be subdivided
into the following (from [15]): small sets of dos-
age-sensitive genes, such as APP, in early onset
Alzheimer disease pathology [16, 17]; interacting
genes that drive major effects, such as DSCR1
andDYRK1A in heart abnormalities and solid can-
cer risk [18, 19]; or the collective influence of
many coincident small effects. Although this lat-
ter mechanism has not been formally demon-
strated, small sets of causative genes responsible
for most DS phenotypes have resisted identifica-
tion, and it is increasingly becoming acknowl-
edged that coincident small effects are major
drivers of complex disease pathogenesis [20–
23]. Moreover, this possibility is supported by
the observations that most trisomic genes in DS
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are indeed overexpressed in multiple tissues [24–29] and that
gene deregulation in DS further impacts up to one-third of dis-
omic genes [29–31]. In addition to dosage effects, this gene de-
regulation seems to result from complex cis- and trans-, intra-
and interchromosomal regulatory interactions, including some
that may impose genome-wide effects.

As with many complex diseases, most DS phenotypes mani-
fest with variable expressivity. This could be due in part to allelic
variation in modifier genes, with only certain combinations of
alleles exerting pathological effects, or chromatin modifications
such as parental imprinting, which may alter the expression of
particular modifier genes [15, 30]. These effects contribute to a
complex interplay between genetic, developmental, and exter-
nal parameters, which collectively determine phenotype expres-
sivity (summarized in Fig. 2).

THE “NEAREST ” MOUSE MODELS OF DS

Mouse models are currently the primary tools used to study DS
etiology and have contributed much of our current understand-
ing of DS pathogenesis [32, 33]. These models are powerful be-
cause they provide researchers with access to developing tissues
and are compatible with a wealth of technologies that allow the

roles of particular genes in establishing disease phenotypes to be
interrogated. It has become clear, however, that for complex
diseases such as DS, with potentially many causative genes, gen-
eratingmousemodels with the exact genetic defect found in the
human disorder might not be possible, resulting in an imperfect
recapitulation of disease etiology and potentially confounding
species-specific disease mechanisms [34]. It is additionally con-
cerning that for many DS pathologies (such as cognitive impair-
ment) the affected mouse and human developmental processes
differ significantly [35].

The most sophisticated mouse models of DS include mice
that contain single-chromosome duplications for the three
mouse chromosomal regions orthologous to HSA21 [36] or con-
tain an extra copy of the complete HSA21 (Tc1 mice) [37]. Triple
segmental duplication DS mice models display cognitive impair-
ment, including reduced hippocampal long-term potentiation,
and hydrocephalus [36]. However, these mice lack B-amyloid
plaque deposition, which is highly penetrant in DS [36]. It is
thought that beyond mouse-human brain differences, such dis-
crepancies could be because mouse-human orthology of HSA21
is not complete [38, 39].

Tc1 mice somewhat circumvent the issue of incomplete
mouse-human orthology formodeling DS by carrying a complete

Figure 1. HSA21 regions linked to particular Down syndrome (DS) phenotypes. Analysis of human segmental trisomies [13] have identified
several dispersed HSA21 regions linked to particular DS phenotypes, including AVSD, AD, IA/DST, MR, HD, and AMKL/TMD. These chromo-
somal regions are relatively large and overlap incompletely, suggesting the existence of potentially many causative genes in DS (well-known
examples indicated at their approximate locations). This is contrary to the long-held notion that genes responsible forDSmaybe clustered into
a single chromosomal region denoted the DSCR [6–11]. The centromere is shown in red, the HSA21 short arm in yellow, and the HSA21 long
arm in blue, with light and dark regions reflecting G-banding. Numbers represent distance in Mb from the distal end of the HSA21 short arm.
Abbreviations: AD, Alzheimer disease; AMKL/TMD, acute megakaryoblastic leukemia/transient myeloproliferative disorder; AVSD, atrioven-
tricular septal stenosis; DSCR, Down syndrome critical region; HD, Hirschsprung disease; IA/DST, imperforate anus/duodenal stenosis; Mb,
megabases; MR, mental retardation; rDNA, recombinant DNA.
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copy of HSA21 [37]. However, the utility of thesemice is limited by
the variable contribution of humanized ES cells to mouse chimeras
andby the fact that theyare sterile, limitinganalysis tomice thatare
mosaic for the additional copy of humanHSA21 [34]. Nevertheless,
thesemice were found to recapitulatemany, but still not all, of the
brain-, heart-, and craniofacial development-related DS traits ob-
served in humans [37]. Other than intrinsic developmental differ-
ences between mice and humans, this could be because human
genes placed in a mouse cellular context will be regulated and be-
have differently than they would in a human [33].

A ROLE FOR DS INDUCED PLURIPOTENT STEM CELLS

Reprogramming of somatic cells of disease-affected patients to a
pluripotent state, generating disease-specific induced pluripo-
tent stem cells (iPSCs), has recently emerged as an alternative
paradigm formodeling human genetic disease in vitro [40, 41]. In
combination with directed differentiation protocols, these iPSC
models theoretically make it possible to derive any given disease-
affected human cell-type [42]. Fluorescence-activated cell sorting
purification protocols further allow isolation of highly reproducible
populations of diseased andwild-type cells [43],whichmay thenbe
interrogated by the library of tools currently used for themanipula-
tion of human cells in vitro. Because of this, disease-specific iPSCs
not only supersede much of the utility offered by mouse disease
models but also do sowithin ahuman cellular context that is able to
faithfully capture complex genetic disease genotypes,making them
a particularly powerful tool for investigating the mechanisms of

complex genetic diseases such as DS. Disease-specific iPSCs also
have the potential to increase our understanding of the genetic (re-
capitulated by iPSCs) versus environmental (not recapitulated) con-
tributions to complex disease phenotypes.

Using iPSCs to Model DS and Other Complex Diseases
An increasing array of disease-specific iPSC lines have been gener-
ated [44], but to date their utility in disease modeling has mainly
been demonstrated for single-gene disorders [40, 45–48]. We re-
cently demonstrated that neurally differentiated DS iPSCs are able
to recapitulate several well-established DS phenotypes, including
increased gliogenesis and sensitivity to oxidative stress-induced ap-
optosis, the latter of which could be pharmacologically prevented
[49]. Another group has also recently shown that DS iPSC-derived
neurons recapitulateAlzheimerdisease-associatedamyloidand tau
pathologies in vitro [50], which seems to demonstrate that iPSC
disease models are also able to recapitulate degenerative pheno-
types over relatively short time scales in vitro.

Schizophrenia is another complex disorder that has re-
cently been successfully modeled using iPSCs [51]. Schizo-
phrenia iPSC-derived neurons were reported to display re-
duced neuronal connectivity (assessed by an elegant in vitro
assay measuring the trans-synaptic transfer of a modified ra-
bies virus), reduced neurite extensions, reduced PSD95 gene
and protein expression, and reduced glutamate receptor ex-
pression, metrics consistent with phenotypes observed in
post-mortem schizophrenia brains [51]. Notably, some of
these phenotypes in schizophrenia iPSC-derived neurons

Figure 2. Mechanisms underlying etiology and variable expressivity of Down syndrome (DS) phenotypes. Down syndrome phenotypes are
classically understood to arise from gene dosage of HSA21 genes (purple arrow), which can be uniquely influenced in different DS individuals
by allelic variation or differential imprinting. It is now becoming clear that subsets of HSA21 genes can in fact often deviate significantly from
1.5-fold overexpression [24–29] and that trisomy of HSA21 additionally results in significant genome-wide transcriptome deregulation
[29–31], seeming to suggest the existence of additional complex intra- and interchromosomal genetic interactions that may also contribute
to DS pathogenesis (blue arrows). Candidate drivers of such mechanisms include HSA21 epigenetic modifiers, transcription factors, or
noncoding RNAs. Notably, the complexity of these interactions presents abundant additional opportunities for polymorphism and epistasis to
contribute to interindividual differences in gene deregulation in DS, and may be a major driver of variable phenotype expressivity. Gene
deregulation in DS underpins a complex etiology that potentially involves multiple cell-autonomous, intercellular and systemic mechanisms,
some of which may additionally be influenced by macro- and microenvironmental factors, and that together exert pathological influence at
various stages of development or maturity such that normal physiological processes approach a pathological threshold. Abbreviations:
miRNA, microRNA; iPSC, induced pluripotent stem cell; lncRNA, long noncoding RNA.
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could be partially rescued with the known antipsychotic drug
loxapine, suggesting that these cells will additionally have
utility in drug screening [51]. Taken together, these studies
demonstrate that iPSCs are able to recapitulate both DS and
other complex disease phenotypes, including those with both
early and delayed disease onset, and that disease-specific
iPSCs allow testing of corrective therapeutics.

Confounding Factors and Limitations When Using iPSC
Models of Complex Disease
It is tempting to speculate that disease-specific iPSCs will be-
come a core component of future investigations into the mech-
anisms of complex human genetic disease in general. However,
before too much expectation is placed on these models for dis-
easemechanism discovery, researchers need to be aware of sev-
eral potential technical confounders and other limitations. An
obvious limitation is that some disease phenotypes arise from
interactions between multiple cell types and involve three-di-
mensional or non-cell-autonomous parameters that can only be
modeled in vitro (if at all) by well-designed organoid or coculture
assays, which are technically challenging to engineer. Capturing
phenotypes that arise froma combination of genetic background
and environmental influences (lifestyle, diet, etc.) over pro-
longed periods of timewill also remain difficult tomodel in vitro.
Further to these inherent limitations, significant gaps in directed
differentiation protocols currently prevent the derivation of suf-
ficiently pure populations of cells for many lineages [42] and are
susceptible to potentially confounding variability in differentia-
tion potential, between human embryonic stem cell or iPSC lines
(including from the same individual/genotype) [52]. It is also
known that the process of reprogramming can generate genetic
and epigenetic variation between iPSC lines [53–57] and that
iPSCs seem to retain an epigenetic memory of their cell type of
origin [58–61], both of which can have a confounding influence
on postreprogramming developmental trajectories and other
cellular processes. Another consequence of epigenetic memory
is that disease-associated epigenetic aberrations from donor so-
matic tissues could plausibly be preserved through reprogram-
ming and could introduce artifactual epigenetic aberrations in
patient-derived iPSC lines, which would not normally be present
in pluripotent cells. For these reasons, when using iPSC disease
models it is important to generate multiple lines from prudently
selected tissues of multiple affected and nonaffected (ideally
from siblings or parents) individuals and to prioritize the use of
nonintegrating reprogramming technologies, which have been
shown to generate less reprogramming-associated genetic and
epigenetic variability [62]. Although this is a significant technical
and financial burden, it will help to reduce noise in analyses from
genetic variation and experimental artifacts, both maximizing
power to identify pathogenic pathways and reducing the likeli-
hood of discovering false disease mechanisms.

INTEGRATING GENOMICS TECHNOLOGIES AND IPSCS TO
UNCOVER THE MOLECULAR NETWORKS DRIVING DS
PHENOTYPES
A picture of many complex diseases such as DS is emerging in
which pathological processes can result from perturbed behav-
iors of biological networks, driven by the collective effects of
many risk genes acting in concert within related network mod-
ules [20–23]. This is in contrast to single-gene disorders or more

simple DS genetic mechanisms, where altered function or dys-
regulation of small sets of genes is sufficient for phenotypeman-
ifestation, and necessitates a different approach to identifying
causative complex disease mechanisms. If we are to understand
the more complex genetic mechanisms of diseases such as DS,
the questions become (a) how are we going to acquire a com-
plete picture of the genetic defect caused by trisomy 21? (b) how
are we going to predict the causative genetic mechanisms from
this large data set? and (c) how are we going to prove that these
mechanisms are indeed causative?

Genomics Technologies to Capture Complex-Disease-
Associated Transcriptome Deregulation
Technologies such as microarrays [63, 64] and, more recently,
RNA sequencing [65, 66] have emerged as powerful tools allow-
ing quantification of genome-wide gene expression. Microarray
studies on peripheral blood cells or post-mortem material have
confirmed that most HSA21 genes are overexpressed by 1.5-fold
in DS, reflecting gene dosage [24–27, 29]. It was these studies
that also surprisingly identified significant global transcriptome
deregulation in DS [29, 30]. Our own transcriptome study of DS
iPSCs confirmed that thousands of genes are deregulated across
the genome even in pluripotent DS cells [49], further suggesting
that this global deregulation may be involved in establishing DS
developmental defects from the earliest stages of development.
Global transcriptome deregulation in DS is likely to result from
HSA21 transcription factors, epigenetic machinery, and noncod-
ing RNAs acting in trans. For example, overexpression of HSA21
microRNAs (miR-155 andmiR-802) leads to progressive silencing
of MeCP2, CREB1, and MEF2C in DS post-mortem brain speci-
mens [67]. Application of microarrays and RNA sequencing tech-
nologies across periods of development in DS can also provide
insight into developmental diseasemechanisms, and the dynam-
ics of transcriptome deregulation in DS. Such an approach was
used to identify Notch signaling and cell migration abnormalities
during DS cerebellar development and demonstrated that over-
expression of trisomic genes was remarkably stable through de-
velopment [68].

Profiling genome-wide gene expression both in tissues of in-
terest and across periods of development promises to produce a
comprehensive annotation of the transcriptome deregulation
responsible for DS phenotypes. However, it remains a major
challenge to effectively interpret these data in a way that will
elucidate themechanisms that are causative in DS and therefore
appropriate for therapeutic targeting.

Predicting Pathogenic Disease Mechanisms
It is becoming clear that many phenotypes of complex diseases
such as DS arise from potentially unique gene deregulation that
converges on particular pathogenic processes [20–23]. This lim-
its the power of classic approaches for identifying disease mech-
anisms from transcriptome data, which might aim to identify
mis-expressed gene sets common to all patients or patients with
a particular phenotype. Amore promising strategy is to use path-
way or gene-set enrichment analysis methods (summarized in
Table 1). These methods do not rely on common gene sets and
are thus well suited to reveal deregulated processes for complex
disease mechanism discovery [69, 70]. Such approaches have
elucidated defects in dopamine receptor signaling, insulin-like
growth factor 1 signaling pathways, and linked proteasomal and
mitochondrial pathways from Parkinson disease patient brain
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gene expression data [71, 72]. Another approach is to reverse
the traditional pathway-analysis workflow of mapping mis-ex-
pressed genes to annotated pathways and to instead begin by
identifying pathways that best distinguish between phenotypes
of interest usingmethods such as “attract ” [73]. “Attract ” is also
able to decompose themost informative expression profiles into
“synexpression ” patterns and allow the identification of novel
genes that had not previously been annotated to a pathway of
interest but that nonetheless share the same expression profile
and therefore might be under shared regulatory control or con-
tribute to similar biological processes. This approach has been

used to implicate novel cell signaling pathways in complex dis-
eases such as Parkinson disease and schizophrenia, and it has
also identified disease-associated differences in expression vari-
ance of core biological networks, defining disease-associated al-
terations in network constraints [74].

As a cautionary note, however, most of these annotation-
based methods are still being actively developed, with several
sources of bias, including type I and type II statistical error, acting
to potentially confound interpretation and reduce reproducibil-
ity of results [69]. For example, most publicly available pathway
analysis tools generally rely on public databases of gene

Table 1. Tools to analyze genome-wide gene expression data for complex disease mechanism discovery

Approach Rank gene expression Identify groups Gene set analysis

Purpose Arrange genes in rank order based on a test statistic
and significance [121].

For experimental design see Churchill [122], and for
analysis approaches see Slonim [123].

Group data at the sample or gene level with
(supervised) or without (unsupervised)
previous knowledge or classification
schemes.

Identify overrepresented groups of genes (pathway
analyses) or functional classes (ontology
analysis).

For review of current approaches see Khatri and
Draghici [75].

Statistical
tools

t test/p value: Identifies significant change
between repeated measures of the same
variable in two groups.

Analysis of variance/F-statistic: Generalizes the t
test to multiple sample groups.

B-statistic: Represents the log of odds that the gene
of interest is differentially expressed [124].

Fold change: Ratio of the expression levels of a
gene between groups [125].

PCA: Reduces the dimensionality of the
data, while conserving as much variance
as possible [126, 127].

Hierarchical cluster: Closely related
samples/genes are clustered by a
similarity metric [64] (e.g., Spearman or
Pearson correlation).

Fuzzy clustering: Samples may belong to
more than one cluster, and ranked by
membership levels.

GSEA: Determines whether members of a gene set
are primarily at the top/bottom of the full
ranked gene list [69].

Attract: Identifies patterns in well-defined KEGG
[128] pathways that distinguish groups, and
decomposes pathways into meta-genes
representing the patterns. This is used to
identify groups of highly correlated genes from
the whole data set [73].

GO: Identifies functional classes that are
overrepresented in a gene list. Functional
classes are derived from the Gene Ontology
(GO) project.

Software
packages

MeV [129, 130] (multiexperiment viewer) has a
comprehensive suite of statistical tools for a
variety of data types, including microarray.

GenePattern [131] provides free access to a
number of tools for gene expression analysis.

R bioconductor packages (e.g. lumi [132], limma
[124]) for microarray data processing and
differential expression analyses.

SAM (significance analysis of microarrays) is a
statistical technique for finding significant genes
in a set of microarray experiments [125].

Genesis [133] is a suite of analysis,
clustering, and visualization tools for
microarray data (allows both supervised
and unsupervised clustering).

MATISSE [134] (module analysis via
topology of interactions and similarity
sets) detects functional modules by using
interaction networks and expression
data (supervised).

GenePattern [131],MeV [129, 130].
MAPPFinder [135] integrates annotations of the

GO Project with the free software package
GenMAPP [136].

DAVID [137] provides a comprehensive set of
functional annotation tools for identifying
enriched GO terms.

PANTHER [138] allows mapping of multiple gene
lists to PANTHER molecular function and
biological pathways.

Cytoscape [139, 140] visualizes and analyzes
molecular interaction networks and integrates
these networks with annotations, GO
categories, and gene expression profiles.

IPA (http://www.ingenuity.com) is a subscription-
based package that integrates data from a vari-
ety of experimental platforms providing insight
into the molecular and chemical interactions,
cellular phenotypes, and disease processes.

Advantages Identifies, on average, which genes contribute to
overall phenotypic differences.

Groups of genes that share similar
expression patterns may also share
biological functions [141] (e.g. common
regulators [142]).

Identifying patterns of gene expression that
correlate with experimental artifacts can
be used to filter samples or genes.

Sample clustering can lead discovery of
disease subclasses [143].

GSEA considers all genes in an experiment, not just
those above an arbitrary cutoff, and allows
flexibility in the selection of gene sets and
comparisons between different platforms.

Biochemical pathway databases (such as KEGG)
provide a higher level of resolution of gene-
pathway relationships than categorical
definitions alone.

Attract searches the whole data set to identify
groups of genes showing patterns of expression
that are highly correlated with the meta-genes
from known pathways. This presents an
opportunity for discovery [74] and considers all
genes in the experiment, and is not limited to
those with functional annotations.

The GO project (http://www.geneontology.org) is
actively curated by an international consortium.
The project provides an ontology of defined
terms representing gene product properties
(cellular component, molecular function, and
biological processes).

Disadvantages Sensitivity:With too few sample replicates, it is
difficult to obtain accurate estimates of variance.

Multiplicity: Thousands of hypotheses are tested
simultaneously, increasing the chance of false
positives. The statistic often requires post hoc
adjustment for this reason [144].

Concordance: Ranked gene lists often do not
replicate between different experiments [15,
145]. The criteria used to define differentially
expressed genes can have a dramatic impact on
the overlap of the resulting gene lists.

Significance thresholds are set arbitrarily, and
interpretations of the statistic require data to be
sampled from a normal distribution.
Normalization and transformation are used for
data not meeting these assumptions.

Clustering approaches rely on the
presumption that most variation in the
data can be explained by a small number
of variables.

Gene sets are usually comprised of either members
of well-defined pathways or genes with
functional annotation. A small number of genes
contribute to these annotations, due to the
limited amount of functional information
available.

Ontological analyses are limited to the three GO
functional categories, developed primarily using
known protein domains to predict gene
function, for which there are always exceptions.
Protein domains with poor functional
information or genes lacking known protein
domains are therefore under-represented.

For genes that are involved in several biological
processes, equal weight is given to each process,
such that it is not always possible to identify the
most relevant functional category using
ontological analysis alone.
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annotation, which are often biased toward biological processes
that have been studied in more detail than others (e.g., apopto-
sis) [75]. This reduces the discovery component of these analy-
ses. Moreover, a recent study found that random gene expres-
sion signatures were commonly significantly associated with
breast cancer outcome by standard gene expression signature
analysis methods, thus implying that previously identified asso-
ciations by these methods are likely spurious and nonreflective
of bona fide diseasemechanisms [76], emphasizing the essential
requirement of assessing the reproducibility of transcriptome
studies. Nonetheless, with refinement, pathway-basedmethods
for interpretation of gene expression data are likely to prove
particularly powerful in investigations into complex diseases
such as DS, because of their ability to detect instances where
small changes in the expression of a group of genes is likely to
exert an amplified effect via their enrichment as a groupwithin a
particular biological pathway. Such pathways would warrant
functional experimentation and may constitute appropriate tar-
gets for therapeutic intervention.

Another approach is to look for evidence of common causes
for large sets of transcriptome deregulation in DS, such as cis- or
trans-regulatory effects of HSA21 gene products, including tran-
scription factors, epigenetic modifiers, and noncoding RNAs [77,
78]. This is possible through screening for binding motif enrich-
ment within sets of deregulated genes [79] or for overlap of
transcriptome deregulation with differential methylation or
chromatin modification profiles across the genome [80–83].
Such analysis will provide insight into the as yet unexplored con-
tribution of epigenetic mechanisms to DS pathogenesis. Identifi-
cation of genes that are drivers of global transciptome deregula-
tion in DS is useful because these are likely to be particularly
appropriate therapeutic targets, as their normalization could po-
tentially correct coordinated pathogenic processes.

LINKINGNETWORKDEFECTSWITHDISEASE PHENOTYPESUSING IPSCS

Study Design
For any predicted pathogenic complex disease mechanism, the
next step is to experimentally demonstrate the necessity and/or
sufficiency of thatmechanism for specific disease features. To do
this using iPSC disease models, this first requires that some dis-
ease feature can be captured by an in vitro cellular phenotype.
Second, the candidate causative mechanism(s) must be pre-
dicted fromomics data generated from the relevant cell type and
developmental stage, since a mechanism that is pathogenic in
one setting may not be in another. Once these criteria are met,
the reproducible nature of iPSC-derivedmodels leaves investiga-
tors well placed to carry out functional experiments. The goal is
to experimentally modulate candidate pathogenic mechanisms
and examine the consequences on phenotype manifestation, to
establish whether the mechanism is causative in pathogenesis.
Normalizing a particular disease mechanism and rescuing the
phenotype demonstrates the necessity of that aberration for the
phenotype. Alternatively, if recapitulating a molecular aber-
ration in wild-type cells recreates a disease phenotype, this
proves the sufficiency of that mechanism for the phenotype.
Importantly, the ability to normalize phenotypes by specific
modulation of molecular aberrations is likely to constitute a
starting point for therapeutic strategies.

Approaches to Proving Causality of Predicted
Pathogenic Mechanisms
A number of versatile technologies are available for the specific
and regulated over- and underexpression of transcripts of inter-
est. Themost established of these include RNA interference-based
approaches and overexpression of exogenous transgenes, both of
which may be delivered in a variety of ways depending on the par-
ticularexperimental requirements [84–88].Highdegreesof control
over the timing of gene knockdown and overexpression are achiev-
able using inducible expression systems [89], allowing simple as-
sessment of the roles of particular genes during narrow develop-
mental windows or periods following a particular stimulus (maybe
to simulate a physiological function). One limitation of these sys-
tems, however, is a lack of control over themagnitude of transcript
knockdown or overexpression. This is particularly limiting when in-
terrogating complex genetic disease mechanisms, since gene de-
regulation in these disorders is often expected to be subtle and to
potentially involvemany related gene products.

More sophisticated control of gene expression modula-
tion is likely to be possible with emerging transcription acti-
vator-like effector (TALE)-based technologies [90, 91]. These
technologies allow transcriptional activator and repressor
modules to be targeted to specific loci anywhere in the ge-
nome [90, 91]. Importantly, by substituting activator or re-
pressor modules with different activities, or altering TALE
concentrations, it should be possible to achieve a high degree
of control over the magnitude of change produced in gene
expression. More farsighted possibilities for the subtle mod-
ulation of gene regulatory networks, such as those that use
synthetic network components to modify the behavior/logic
of particular gene regulatory modules [92, 93], might prove
particularly useful in modeling and normalizing more elabo-
rate pathogenic genetic mechanisms for some complex-dis-
eases. In some cases, it might also be effective to target gene
products, for example by using small molecules or recombi-
nant proteins, to directly examine the contribution of dereg-
ulation of these gene products to transcriptome deregulation
and pathogenesis [94]. By combining multiple modules/tech-
nologies, it should be possible to sensibly modulate complex
gene deregulation phenotypes. Once this can be achieved we
can ask whether a particular network defect is indeed neces-
sary or sufficient for a particular phenotype.

In cases where large sets of deregulated genes appear to
result from trans-regulatory effects of individual deregulated
transcription factors, epigenetic modifiers, or noncoding
RNAs, technologies such as chromatin immunoprecipitation
sequencing [95, 96] and capture hybridization analysis of RNA
targets/chromatin isolation by RNA purification [97, 98] may
be useful to demonstrate binding of the trans-acting factor to
deregulated target loci. Normalizing the expression of the
trans-acting factor(s) (by the above approaches) could then
be used to confirm the functional importance of these genes
in regulating their targets and contributing to disease pheno-
type manifestation.

Generating Genotype-Phenotype Maps of DS Using
Chromosomal Engineering of DS iPSCs
Chromosomal engineering using DS iPSCs could allow assess-
ment of the role of trisomy of discrete chromosomal regions
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in pathogenesis of DS cellular phenotypes. TAL effector nu-
cleases (TALENs) allow targeted cleavage of almost any site in
the human genome [90, 91] and have been used for chromo-
somal engineering of iPSCs [99]. We are currently pursuing a
chromosomal engineering approach that allows deletion of
large regions of HSA21, adapted from a method used in mice
[12, 100]. The method introduces two cassettes bordering the
region to be deleted, containing both tandemly oriented Cre
recombinase loxP substrate sites for gene excision and posi-
tive and negative genetic selection markers, allowing simple
selection of successfully excised regional HSA21 deletion DS
iPSC clones [101]. This will be particularly informative when
rationally implemented to test genotype-phenotype maps
generated from human segmental trisomy patients and cor-
responding clinical data [13]. Combination of regional dele-
tion DS iPSCs with unmodified DS iPSC lines, and whole-HSA21
deletion DS iPSC lines, would offer perfect experimental con-
trols, with identical genetic backgrounds.

PERSPECTIVES AND FUTURE DIRECTIONS: IPSC-BASED PARADIGMS
FOR INVESTIGATION INTO COMPLEX DISEASE ETIOLOGY
The strategy for research into complex disease presented in
this review is primarily motivated by appreciation of the lim-
itations of reductionist-type approaches that focus on individ-
ual proteins or signaling pathways in the setting of complex
disease. These studies have dominated human genetic dis-
ease research for the last two decades, and their limitations
are well evidenced by the lack progress to date in understand-
ing themechanisms of, and designing treatments for, complex
human genetic diseases in general. Many complex diseases
such as DS are thought to arise in part from the collective
contributions of potentially small perturbations in large num-
bers of causative genes. Moreover, in DS causative genes
need not be limited to HSA21, because of the ostensibly large
influence of trans-regulatory effects on global transcriptome
deregulation. To account for this we describe strategies to
capture systems-level genetic deregulation, and we describe
approaches that are able to predict mechanisms that
are likely to be pathogenic from this profile. Importantly,
these methods are sensitive to small-magnitude changes in
large sets of functionally related genes. We further describe
how iPSCs can be used in conjunction with a variety of estab-
lished and emerging technologies to functionally interrogate
these predicted pathogenic genetic mechanisms, to formally
demonstrate the necessity and sufficiency of these mecha-
nisms for pathogenesis of particular disease phenotypes.
iPSCs have enabled this paradigm of research by providing a
renewable and reproducible source of disease relevant hu-
man cells, theoretically representing any cell type or develop-
mental stage, and the impact of iPSCs is amplified by the ap-
parent inability of mouse models to faithfully recapitulate
complex human genetic diseases.

There are a number of limitations to this strategy as it is
presented that will need to be overcome to yield the true poten-
tial of iPSC-based research into complex disease. First, the strat-
egy we have presented is not directly sensitive to alterations in
the function of particular transcripts or proteins; rather, it only
detects changes in their expression. Combination of DNA se-

quencing technologies with diseased donor cell lines could
catalogue genome-wide mutations/single-nucleotide polymor-
phisms enriched in diseased cells, as done in genome-wide asso-
ciation studies, to aid identification of potential functional as
well as expression-level alterations [102]. However, although
techniques able to predict the mechanistic consequences of se-
quence changes to protein function are showing some promise
[103], they are prone to error and have not yet been applied to
noncoding RNAs. This limitation will need to be overcome if we
are to reduce the requirement for time-consuming and costly
experimental validation of the mechanistic influence of large
numbers of disease-associated sequence variants.

Second, many complex disease mechanisms may be rooted
in protein or metabolic network functional defects [20–22].
Emerging technologies are beginning to allow systems-level pro-
filing of these networks [104–108], including post-translational
proteinmodifications [109, 110] and protein complex stoichiom-
etries [111, 112], even with spatial and high-throughput tempo-
ral resolution [113, 114], and within human tissues and cell lines
[115–119]. Importantly, once this is possible, an overall ap-
proach similar to that which we have presented here for gene
expression should be applicable, but instead centered on pro-
teome/metabolome features or even multiomics networks
[120]. It is also worth noting that although gene expression pro-
filing cannot detect functional transcript changes or changes in
protein/metabolic network function directly, in many cases it
may be possible to infer such functional changes based on the
structure of gene regulatory network alterations [94].

Finally, strategies to combat challenges associated with
modeling complex genetic diseases will need to be implemented
(as discussed above), and progress is still required in developing
directed differentiation and cell sorting protocols. Nonetheless,
a combination of disease-specific iPSCs with increasingly sophis-
ticated systems-level technologies, including components allow-
ing profiling of complex systems, interpretation of the resulting
data, and the functional manipulation of relevant biological net-
works, promises to produce a lasting impact on the field of com-
plex human genetic disease research and lay a foundation for the
future development of therapeutic strategies.
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