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Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channel-
opathies of the peripheral neuromuscular junction (NMJ) and central nervous system 
(CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor 
(AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common 
features, including genetic predispositions, environmental factors, the breakdown of 
tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/
Th17/regulatory T  cells, aberrant cytokine and antibody secretion, and complement 
system activation. However, some aspects of the immune mechanisms are unique. 
Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly 
affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves 
the CNS. Inflammatory cells, including B  cells and macrophages, often infiltrate the 
thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, 
mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed 
in the target organ—the spinal cord. A review of the common and discrepant charac-
teristics of these two autoimmune channelopathies may expand our understanding of 
the pathogenic mechanism of both disorders and assist in the development of proper 
treatments in the future.

Keywords: neuromyelitis optica spectrum disorders, myasthenia gravis, channelopathy, humoral immunity, 
inflammation

iNTRODUCTiON

Myasthenia gravis (MG) is an autoimmune disease in which antibodies target postsynaptic mem-
brane components at the neuromuscular junction (NMJ) and is characterized by fluctuating muscle 
weakness and fatigue (1–3). MG involves specific skeletal muscles, frequently including ocular, bul-
bar, and proximal extremity muscles but also affects respiratory muscles in severe cases (4, 5). The 
disease begins with an acute or subacute onset, improves with spontaneous remission or treatment, 
and relapses after variable intervals (6, 7). As the most important biomarkers in diagnosis, antibod-
ies comprise a series of immunoglobulins (Igs) binding to acetylcholine receptors (AChR)—an 
ion channel protein, muscle-specific kinase (MuSK), and lipoprotein receptor-related protein 4 
(LRP4) or other postsynaptic proteins (4). Based on the antibody profile, clinical presentation, 
age of onset, and thymic pathology, patients can be divided into several subtypes: MG with anti-
AChR antibodies (AChR-MG) of early-onset, late-onset or with thymoma; MG with anti-MuSK 
antibodies (MuSK-MG); MG with anti-LRP4 antibodies (LRP4-MG); ocular MG; and seronegative 
MG (1, 4). MG has a prevalence of 15–25 cases per 100,000 individuals and an annual incidence of 
0.8–1 cases per 100,000 individuals (1, 8), and AChR-MG constitutes approximately 80% of all MG 
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cases (4, 5). The age of onset and the female-to-male ratio varies 
between different subtypes (2, 4, 5). The disease is usually well 
controlled by immunosuppressive, symptomatic, supportive, or 
surgical treatment in most patients; however, only a few patients 
(22.2% of AChR-MG, 3.6% of MuSK-MG, and 21.9% of others) 
obtain full remission (1, 4, 9).

Neuromyelitis optica (NMO) is a severe, idiopathic, demy-
elinating disorder of the central nervous system (CNS) that has 
recently been recognized to be distinct from the classic demy-
elinating disease—multiple sclerosis (MS). NMO preferentially 
affects the optic nerve and spinal cord, but relatively spares the 
brain (10). With the discovery of the diagnostic biomarker—
NMO-IgG (11), a better understanding of the pathogenesis of 
the disease was obtained and the clinical entity evolved. In 2015, 
the diagnostic criteria adopted the term neuromyelitis optica 
spectrum disorders (NMOSD) to incorporate inaugural or lim-
ited forms of NMO (idiopathic single or recurrent longitudinally 
extensive myelitis or recurrent or simultaneous bilateral optic 
neuritis), the involvement of the brain, coexistence with other 
autoimmune disorders, and Asian opticospinal MS (12). Most 
patients are seropositive for Ig G against aquaporin-4 (AQP4-
IgG) (13–16), which is the most abundant water channel protein 
in astrocytes throughout the CNS (17, 18). Approximately 
5–10% of patients are seropositive for antibodies against myelin 
oligodendrocyte glycoprotein (MOG-IgG) (19–21), and a few 
patients are dual-positive for both antibodies (22, 23). The 
prevalence and incidence of NMO/NMOSD are approximately 
3.9–10 and 0.07–0.73 per 100,000, respectively, the median age 
of onset is 35–37 years and the female-to-male ratio is approxi-
mately 8–9:1 (24). Most patients have a relapsing course, with 
the interval between attacks ranging from months to years; the 
subsequent accumulation of disability leads to a poor prognosis 
despite the use of immunosuppressive treatment (10, 16, 25).

As autoimmune channelopathies in the periphery and CNS, 
MG and NMO share many similarities: (i) they develop based 
on a synergy between genetic factors and environmental effects 
(26, 27), (ii) the common female dominance in the prevalence 
of some major subtypes suggests an influence of gender on both 
diseases (28, 29), (iii) both depend on T cell-mediated, B cell-
dependent immunopathology and the effects of antibodies and 
complements (30, 31), (iv) patients with the two disorders display 
similar relapsing courses and require chronic immunomodula-
tory management (1, 7, 10), (v) the disorders frequently coexist 
with other systemic or organ-specific autoimmune disorders  
(32, 33), and (vi) AChR-IgG and AQP4-IgG have been co-detected 
in patients with MG and NMOSD in a few studies (16, 33). MG 
and NMO may share similar pathogenic mechanisms; however, 
some discrepancies exist. AChR and AQP4 are expressed in the 
periphery and CNS (18, 34), whereas MG mainly affects the NMJ 
in the periphery outside of CNS (35), and NMO preferentially 
involves the CNS (36, 37). Inflammatory cells, including B cells 
and macrophages, often infiltrate the thymus but not the tar-
get—muscle in MG (38), whereas infiltration of inflammatory 
cells, mainly polymorphonuclear leukocytes and macrophages, 
in NMO, is always observed in the target organ—the spinal 
cord (39). A comparison of the pathogenesis, particularly the 
immune regulation, between MG and NMO is compelling, and 

will expand our understanding of the pathogenesis and assist in 
the future development of appropriate treatments.

iNHeRiTeD SUSCePTiBiLiTY

The prevalence of familial and monozygotic patients has helped 
to explain the role of hereditary factors in pathogenesis. The 
frequency of familial MG in general patients is approximately 
3–4% (40, 41), and the concordance between monozygotic MG 
twins is approximately 35% (42), both of these values are higher 
than the prevalence of 15–25/100,000 in the general population. 
Similarly, two studies reported a frequency of familial occurrence 
of NMOSD of approximately 3% (43, 44), which is greater than 
the prevalence of 0.52–4.4/100,000 in the general population. 
Based on these findings, genetic factors are likely to be involved 
in the susceptibility to both MG and NMOSD. However, the 
concordance of only 35% in monozygotic MG twins and rare 
reports of monozygotic NMOSD twins support the important 
role of environmental factors in the etiology (42, 45).

Human leukocyte antigen (HLA) genes are always strongly 
associated with many autoimmune diseases (46, 47). The 
AH8.1 haplotype has been reported to be linked to early-onset 
MG in a Caucasian population (48). Recently, a genome-wide 
association study in Turkey found that HLA-B*08:01 and HLA-
C*07:01 are associated with early-onset AChR-MG; HLA-DQA1 
and HLA-DQB1 are associated with late-onset AChR-MG; 
and HLA-DQB1*05:02 is associated with MuSK-MG (49). 
However, another North American and Italian study identified 
a link between HLA-DQA1 and both subtypes through different 
variants (50). According to two studies from China, the DQ9 
haplotype and HLA-DRB1*09 alleles occur more frequently in a 
southern Han population with ocular MG and in northern Han 
patients with MG than in controls, respectively (51, 52). Several 
studies from different populations have together identified an 
association of DQ*5 alleles with MuSK-MG (53–56). In addition, 
some associated non-HLA loci have also been identified, such as 
cytotoxic T lymphocyte-associated protein 4, tumor necrosis fac-
tor receptor superfamily 11A (TNFRSF11A), zinc finger and BTB 
domain-containing 10 (ZBTB10), protein tyrosine phosphatase 
nonreceptor type 22 (PTPN22), tumor necrosis factor alpha-
induced protein 3-interacting protein 1 (TNIP1), and receptor 
activator of nuclear factor κB ligand (50, 57, 58). Finally, the 
polymorphisms in CHRAN1 and CHRND encoding the subunits 
of AChR were found to confer an increased risk of MG (59, 60), 
suggesting that an aberrant AChR structure might contribute to 
autoimmunity.

An association between NMOSD and HLA has also been 
reported in different populations, although this notion was refuted 
in one study (61). DPB1*1501 has been reported to be associ-
ated with opticospinal forms of MS—a subgroup of NMOSD in 
Japan, despite its presence in 60% of the general population (62). 
DPB1*0501 was also shown to correlate with AQP4-IgG-positive 
NMO/NMOSD in southern Han Chinese and Japanese popula-
tions (63, 64). In a Spanish cohort, DRB1*03 was not only more 
frequent in patients with NMO than in healthy controls but was 
also associated with AQP4-IgG seropositivity (65). This allele was 
also confirmed in Afro-Caribbean, Brazilian, and south Indian 
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patients with NMO (66–68). Similar to MG, some non-HLA loci 
are also likely related to NMO/NMOSD pathogenesis, such as the 
T  cell receptor, cluster of differentiation 6, TNFRSF1A, CD58, 
interleukin (IL)-17A and IL-17F, and the CYP7A1 promoter 
(69–73). However, PTPN22, which is associated with MG and 
other autoimmune diseases, was not correlated with NMO (74). 
Unlike polymorphisms in the AChR gene in MG, polymorphisms 
in AQP4 are not associated with NMO susceptibility (75).

The obvious association between HLA and MG/NMO suggests 
that antigen-presenting cells (APCs) and lymphocytes might play 
important roles in transferring signals from the activated innate 
immune system into specific adaptive autoimmune responses 
and establishing long-lived memory autoimmunity. In addition, 
the polymorphisms in non-HLA genes involved in immune 
signaling might cumulatively contribute to the pathogenesis of 
MG and NMO by overcoming or lowering the thresholds for 
immune signaling.

ePiGeNeTiC MeCHANiSMS

Epigenetic mechanisms link the environmental factors and genet-
ics in disease, which include microRNA, DNA methylation, and 
histone acetylation (38). Many aberrant microRNAs expression 
has been reported to be involved in MG, including miR-320a, 
miR-155, miR-146a, and let-7c in immune cells and miR-150 and 
miR-21 in sera (26, 38). Mamrut et al. recently studied the profile 
of transcriptome and methylome in MG and found extremely 
high similarity at the transcription and the DNA methylation 
levels not only between discordant twins but also between the 
healthy discordant twins and the whole MG patients group, 
which indicated the high importance of genetic predisposition 
in the pathogenesis of MG (76). In addition, many differentially 
expressed genes and methylated CpGs in peripheral monocytes 
were detected between MG patients and controls, which sug-
gested numerous small changes at gene or methylation levels 
might together contribute to MG development (76). In NMO 
patients, a recent study found 17 microRNAs was upregulated 
and 25 microRNAs was downregulated compared with healthy 
controls (77). Interestingly, the downregulated expression of 
miR-150 and miR-21 in serum of NMO patients is different from 
the upregulated expression in whole blood of MG patients, which 
may be a result of different methods.

eNviRONMeNTAL FACTORS

Many environmental factors contribute to the onset and sever-
ity of autoimmune diseases as predisposing factors, such as 
diet, vitamin D, and microbiota, or lead to relapse as triggering 
factors, such as infections, pollutants, and pharmacological  
molecules (38).

Vitamin D deficiency has been found to be correlated with 
the prevalence of many autoimmune diseases, such as type I 
diabetes mellitus, MS, rheumatoid arthritis (RA), systemic lupus 
erythematosus (SLE), and inflammatory bowel diseases (78). 
Vitamin D contributes to the regulation of the immune system 
through multiple mechanisms, including regulation of the activa-
tion and differentiation of CD4 lymphocytes, the suppression of 

differentiation of monocytes into dendritic cells, the reduction 
of cytokine production, and stimulation of natural killer T cells 
(38). In patients with MG, vitamin D levels are decreased, and 
vitamin D improves the autoimmune response and fatigue (79). 
As shown in the study by Alahgholi-Hajibehzad et al., vitamin D 
significantly increases the function of regulatory T  cells (Treg) 
derived from patients with MG in  vitro (80), and complete 
remission of severe refractory MG was reported after treatment 
with a massive-dose of vitamin D; however, this finding remains 
to be confirmed by additional high-quality clinical trials (81). 
According to Mealy et al., vitamin D levels are significantly lower 
in patients with recurrent spinal cord disease, mainly includ-
ing NMO/NMOSD (82); the finding was reproducible in other 
NMO/NMOSD studies (83–86). Among these studies, a group 
from south China found that vitamin D levels were inversely 
correlated with disease-related disability, clinical activity, and 
prognosis (83); however, Thai, Turkish, and Korean groups did 
not observe a correlation (84–86). Additional studies are needed 
to clarify whether low vitamin D levels are a predisposing factor 
for or a secondary consequence of NMO.

The gut microbiota consists of trillions of microorganisms that 
colonize the intestine and regulate the maturation and function 
of the host immune system (87). When the host changes his or 
her diet or lifestyle or overuses antibiotics, the susceptibility to 
autoimmune disorders may increase due to the altered symbiotic 
relationship between the host immune system and the microbiota 
(88). Despite considerable research on the relationship between 
the gut microbiota and other autoimmune diseases, studies of 
the microbiota in patients with MG are scarce. A mixture of 
probiotics was recently shown to reduce the clinical symptoms 
of experimental autoimmune MG by suppressing AChR-reactive 
lymphocytes and generating regulatory dendritic cells and Tregs 
(89). An investigation of the gut microbiota in patients with 
NMO revealed the overrepresentation of Clostridium perfringens, 
and the C. perfringens adenosine triphosphate-binding cassette 
transporter (ABC), shared a homologous sequence with AQP4 
that could cross-react with T  cells from patients with NMO  
(90, 91). This result provides a new cue for the pathogenesis of 
NMO, but further studies, including the establishment of appro-
priate animal models, are warranted.

Viral infections, particularly with Epstein–Barr virus (EBV), 
have been correlated with the pathogenesis of many autoimmune 
diseases in seroepidemiological and immunological studies (92). 
EBV-infected B  cells have been detected in the target organs 
in many autoimmune diseases; similarly, these cells were also 
detected in the hyperplastic thymus of patients with MG (38, 93).  
High levels of antibodies against the type 1 nuclear antigen of 
EBV were recently shown to be more common in patients with 
MG (94). The virus might induce persistent inflammation in 
the thymus and initiate autoantigen sensitization, leading to 
the subsequent autoimmune response (92). However, this find-
ing was not confirmed by two other studies (95). Antibodies 
against EBV were more frequently detected in the serum and 
cerebrospinal fluid (CSF) of patients with NMO than in controls, 
suggesting that EBV might be involved in NMO pathogenesis 
(96). In addition, a peptide derived from the TAX1BP1 protein 
of human T cell leukemia virus type 1 virus (HTLV-1), was used 
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to immunize mice and induced the production of antibodies 
against the peptide and homologous AQP4 epitope without any 
brain lesions, suggesting that HTLV might also be implicated in 
the pathogenesis of NMO (97), although a previous clinical study 
argued against this view (98).

GeNDeR BiAS

Most autoimmune diseases exhibit a higher incidence in 
females (99). Gonadal hormones and direct X-chromosome 
effects have been proposed to contribute to the sex bias (99). 
Compared with males, females have many differences in innate 
immunity and adaptive immunity (100). Females were revealed 
to have higher expression of some genes involved in toll-like 
receptor (TLR) pathways and stronger type I interferon (IFN) 
responses by transcriptional analyses (100, 101). In addition, 
females display higher phagocytic activities of neutrophils 
and macrophages, more efficient APCs and dysregulation of 
innate lymphoid cells (100, 102, 103). Females also have higher 
CD4+ T  cell counts, higher CD4/CD8 ratios, higher basal Ig 
levels, and higher B cell numbers, as well as lower Treg counts  
(100, 104, 105). Moreover, peripheral blood mononuclear cells 
(PBMCs) produce more activated CD4+ T cells (100). Estrogens 
may play a major role in this effect as they can favor the folli-
cular helper T cells (Tfh) response and affect B cell maturation, 
selection, and antibody secretion (29, 106). Furthermore, at 
specific doses, time points, and microenvironments, estrogens 
allow autoreactive B cells to escape from the normal tolerance 
mechanisms and to accumulate in sufficient numbers to induce 
autoimmunity (38, 107).

Obvious female dominance was observed in patients with 
early-onset AChR-MG, MuSK-MG, and LRP4-MG, with female: 
male ratios of 9:1, 4:1, and 2:1, respectively, indicating that sex 
may affect the pathogenesis of some subtypes (10, 38). The clini-
cal severity is modulated by menstruation, which is abolished by 
thymectomy, and aggravation occurs during pregnancy and the 
postpartum period (108, 109). The increased estrogen receptor 
expression in thymocytes and PBMCs in patients with MG 
induced by the inflammatory environment suggests that estro-
gens potentially contribute to the MG autoimmune process by 
affecting cytokine production and B cell activity (29, 110).

A similar female: male distribution (8–9:1) was also 
observed in patients with NMO/NMOSD in a new comparative 
population-based study (24), and the ratio has been shown to 
reach 23:1 in AQP4-IgG-positive patients during fertile periods 
(28). Moreover, some researchers have reported a more frequent 
relapse rate in female patients with NMOSD during pregnancy 
and the postpartum period and an earlier age of NMOSD onset 
in patients treated with systemic hormone therapy (111, 112). 
Based on these findings, gender may affect NMO pathogenesis 
through female hormones, and genetic or epigenetic factors. 
Estrogen has been postulated to promote autoreactive B  cell 
development with increasing INF I and B-cell-activating factor 
(BAFF) generation, to decrease autoreactive B cell apoptosis with 
upregulation of antiapoptotic molecules, to facilitate antibodies 
production and affect antibodies glycosylation, and to contribute 
to the pathogenesis of NMO in females (111).

iNNATe iMMUNiTY iN THe iNiTiATiON  
OF AUTOiMMUNiTY

Adaptive immunity plays a major role in both MG and NMO, but 
requires the innate immune system to initiate pathogenesis (93). 
However, the exact mechanism by which the immune system ini-
tiates autoimmunity in both diseases, particularly NMO, remains 
largely unknown due the lack of ideal animal models.

In early-onset AChR-MG, the pathogenic link between 
innate immunity and autoimmunity in the thymus is well 
recognized (92). Obvious IFN and TLR imprinting has been 
observed in the hyperplastic thymus, which potentially upregu-
lates the α-AChR expression in epithelial and myoid cells (92). 
In the context of the genetics of susceptibility and predisposing 
environmental factors, the aberrant innate response to thymic 
inflammation may induce AChR sensitization and lead to 
adaptive immunity (92). In a recent study, an intraperitoneal 
injection of polyinosinic–polycytidylic acid, a mimic of double-
stranded RNA, upregulated TLR3 and IFN-β expression, and 
stimulated α-AChR overexpression in thymic epithelial cells 
(TEC), specifically triggering the proliferation of B  cells, the 
generation of anti-AChR antibodies and the presentation of 
MG-like clinical signs (113). In another study, EBV infection 
was observed in B cells and plasma cells (PCs) in the thymus of 
patients with MG (93). Taken together, these findings provide 
a possible theoretical basis for the mechanism by which innate 
immunity induces autoimmunity in MG.

Due to the limited data available, researchers have not clearly 
determined whether the initiation of autoimmunity occurs in 
the CNS or the periphery in patients with NMO. Levy et  al. 
speculated that astrocyte death induced by an unknown cause 
might lead to the activation of microglia and the release of 
inflammatory mediators, thereby disrupting the blood–brain 
barrier (BBB) and recruiting immunocompetent cells from the 
periphery. APCs phagocytose cell debris, process the AQP4 
antigen, present the linearized determinants to CD4+ T cells, and 
initiate adaptive immunity (114). However, this hypothesis does 
not explain why AQP4 expressed in peripheral organs does not 
elicit autoimmunity. In the study by Zamvil et al., C. perfringens 
was overrepresented in the gut microbiome of patients with 
NMO compared with that of controls and the ABC protein on 
the bacteria reacted with AQP4 p61–80-specific T cells obtained 
from patients with NMO and induced Th17 polarization (90, 91).  
Based on this observation, a molecular mimicry mechanism 
in the periphery might initiate autoimmunity in patients with 
NMO (91), a process that must involve the innate immune sys-
tem. In fact, monocytes derived from the PBMCs of patients with 
NMO produce more IL-6 for Th17 polarization when stimulated 
in vitro (91).

ADAPTive iMMUNiTY

T Cells
T helper 1 (Th1)/Th2/Th17 Cells
T helper 1 cells, Th2 cells, and Th17 cells are important subtypes of 
CD4+ T cells characterized by the different patterns of cytokines 
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they secrete. Th1 cells produce IFN-γ and are responsible for the 
defense against intracellular pathogens; Th2 cells produce IL-4, 
IL-5, and IL-13 and are involved in the response to parasitic 
infections; and Th17  cells produce IL-17 and defend against 
extracellular pathogens (115). Under pathological conditions, 
Th1 and Th17 cells are associated with autoimmunity, and Th2 
cells are implicated in allergic responses (115).

Patients with MG display increased numbers of IFN-γ or 
IL-4-expressing cells in PBMCs, suggesting that both Th1 and 
Th2 cells are involved in MG (29, 116). However, in a recent 
study, the percentage of Th1  cells among CD4+ T  cells was 
higher than the percentage of Th2 cells, and the Th1/Th2 ratio 
correlated positively with clinical severity in the glucocorticoid-
treated group (117). Increased numbers of Th17 cells and serum 
IL-17 levels were observed in patients with MG complicated 
with thymoma, and a correlation was observed between the 
percentage of Th17 cells and the AChR antibody titer (118, 119). 
In addition, a Th1/Th17/follicular Tfh signature was revealed 
in an analysis of the transcriptomes of purified thymic T cells 
obtained from patients with MG, most of whose thymus glands 
bore germinal centers (GCs) (120). However, in a heterogene-
ous group of patients with AChR-MG, the serum IL-17 levels 
were comparable to those of normal controls (121). Increased 
frequencies of Th1 and Th17 cytokines were detected in patients 
with MuSK-MG (122), although another study revealed that 
similar polarization was detected in PBMCs only after stimula-
tion in vitro (123).

Some debate exists about the roles of Th1/Th2 cells in NMOSD. 
Using flow cytometry to analyze T  cell subsets in PBMCs,  
Uzawa et  al. observed a higher Th1/Th2 ratio in patients 
with MS but not in patients with NMOSD (124). In  
contrast, Shimizu et  al. reported a higher Th1/Th2 ratio 
in patients with NMOSD than in patients with MS (125). 
However, it is generally accepted that Th17-related cytokine 
and chemokine levels are frequently elevated in the serum 
and CSF of patients with NMOSD (126–129). Among these 
cytokines, IL-6 is secreted by macrophages, dendritic cells, and 
B cells, induces B cells to synthesize antibodies, and facilitates 
the differentiation of naïve T  cells into Th17  cells (127). 
Several studies have reported elevated serum and CSF IL-6 
levels and a strong correlation between CSF IL-6 levels with 
clinical signs in patients with NMO (128), and IL-6 receptor 
blockade results in a decreased relapse rate (130). Levels of 
granulocyte colony-stimulating factor, which is responsible for 
the survival, proliferation, and differentiation of neutrophils, 
and IL-8, which is responsible for neutrophil recruitment, 
were also increased in the CSF of patients with NMO (127). 
Taken together, these observations suggest the important roles 
of Th17 cells in NMO.

Treg Cells
CD4+CD25+FoxP3+ Treg cells form a special subgroup of CD4+ 
T  cells that are involved in the induction and maintenance of 
immune homeostasis and tolerance (131). Treg cells can suppress 
activated T  cells and B  cells by secreting transforming growth 
factor-β (TGF-β), IL-10, and IL-35 (131). Defective function of 
Tregs with reduced FoxP3 expression has been observed in the 

thymus and PBMCs of patients with AChR-MG (132, 133), but 
the normal Treg numbers in this study contradict the reduced 
Treg numbers in PBMCs found in another study (134). It remains 
unclear whether the Tregs number is abnormal or not in patients 
with NMO.

Tfh Cells
Helper T cells comprise a group of effector T cells that are char-
acterized by the expression of transcription factor B cell lym-
phoma 6 and the surface marker CD4, C–X–C motif chemokine 
receptor 5 (CXCR5) and programmed cell death protein 1 
(PD-1), which promote B cell maturation and antibody produc-
tion (135). In our previous study, patients with generalized MG 
displayed significantly increased numbers of circulating Tfh 
cells and reduced numbers of follicular Tregs in PBMCs, and the 
numbers of Tfh cells were strongly correlated with the plasma 
cell frequency and AChR antibody titers (136). In addition, 
B  cells produced antibodies in an IL-21 signaling-dependent 
manner when cocultured with Tfh cells (136). As in patients 
with MG, the Tfh cell frequency was higher in patients with 
NMOSD than in healthy controls and was higher in relapsing 
patients than in remitting patients (137). In addition, treatment 
with methylprednisolone decreased the numbers of Tfh cells in 
patients with NMOSD (137). Interestingly, in another report, 
the numbers of circulating memory Tfh cells were increased in 
patients with NMOSD and were positively correlated with the 
clinical severity and AQP4 antibody levels (138). Based on these 
findings, Tfh cells might contribute to the development of MG 
and NMO through an effect on autoreactive B cells.

B Cells
B Cells, Plasmablasts (PBs), PCs  
and Memory B Cells (MB)
Both MG and NMOSD are humoral immunity-mediated 
autoimmune diseases, and B cells play an important role in the 
pathogenesis of both disorders. PBs and PCs secrete antibodies, 
and MBs produce proinflammatory cytokines and exacerbate 
autoimmunity (111). The survival, maturation, and differentia-
tion of B cells is regulated by BAFF (139).

In patients with MG, B cells proliferation is not detected in 
the peripheral blood, but GCs are observed in the hyperplastic 
thymus (38), in which B  cells encounter the antigen, interact 
with Tfh, and differentiate into short-lived or long-lived PCs, 
IgD−CD27− B cells (DN), and MBs (140). Higher titers of AChR 
antibodies are produced by PBs or PCs in the thymus than in 
peripheral blood cells in  vitro, but extra-thymic PCs also con-
tribute to serum AChR antibody titers, based on the observation 
of persistent antibody generation after thymectomy (140). MBs 
are also involved in MG pathogenesis. In a recent case study of a 
patient with AChR-MG, relapse occurred after the discontinua-
tion of rituximab and other drugs, with the repopulation of DNs 
and IgD−CD27+ MBs (141). The serum BAFF levels in patients 
with MG were significantly elevated, although the levels were not 
correlated with the clinical severity (140).

In patients with NMO, the numbers of 
CD19intCD27highCD38highCD180− B  cell PBs are selectively 
elevated in the peripheral blood and further expanded during 
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relapse; these cells are responsible for the generation of AQP4 
antibodies in an IL-6-dependent manner (142). Rituximab was 
also reported to control clinical activity by reducing the number 
of CD27+ MBs but not by inducing changes in AQP4 antibody 
levels, which indicates the role of MBs in the development of 
NMO (143, 144). The serum and CSF BAFF levels were signifi-
cantly elevated in patients with NMO and the serum BAFF levels 
were reduced after treatment with rituximab (111).

Regulatory B Cells (Breg)
Regulatory B  cells comprise a specific group of B  cell subsets 
characterized by production of anti-inflammatory cytokines, 
such as TGF-β, IL-10, and IL-35, which downregulate excessive 
immune and inflammatory responses (145). Several studies have 
observed impaired Bregs in patients with MG. The frequency 
of CD19+CD1dhighCD5+ and CD19+CD24highCD38high subsets 
and IL-10-producing B  cells (B10) was decreased in patients 
with MG, and that was correlated with clinical severity (146). In 
another report, the production of IL-10 and TGF-β1 was lower in 
patients with MG than in healthy controls (147). Similarly, Quan 
et al. observed a decreased frequency of CD19+CD24highCD38high 
subsets and B10 in patients with NMO compared with those in 
patients with MS and controls, and the frequency was even lower 
in patients with AQP4-IgG-positive NMO (148).

ANTiBODieS

Increasing numbers of antibodies have been discovered in 
patients with MG, including MuSK antibodies, LRP4 antibod-
ies, agrin antibodies, titin antibodies, potassium voltage-gated 
channel subfamily A member 4 (KV1.4) antibodies, ryanodine 
receptor antibodies, and others (4). However, AChR antibodies 
remain the most important antibodies in MG and are present 
in approximately 80% of patients (4). As the earliest recognized 
antibody in MG, its pathogenic mechanism has been clarified. 
(i) Antibodies binding to AChR can accelerate the degradation 
of AChR by cross-linking the receptors; (ii) AChR is blocked by 
steric hindrance; and (iii) the complement cascade is activated to 
form membrane attack complex (MAC) and induces damage to 
postsynaptic membranes by complement-dependent cytotoxicity 
(CDC) (149).

Aquaporin-4 antibodies are detected in more than 75% of 
patients with NMO (11), and MOG and AQP1 antibodies have 
also been discovered in both AQP4-IgG-positive and -negative 
patients (13, 23). First, AQP4 antibodies mainly comprising the 
IgG1 isotypes promote complement cascade activation to form 
the MAC in the end-feet and lead to cell death by CDC after 
binding to AQP4 on astrocyte (18). The released inflammatory 
medium, such as complement protein 3a (C3a) and C5a, together 
with other cytokines, recruit granulocytes and macrophages, 
which induce secondary oligodendrocyte damage, demyelina-
tion, and neuronal death through antibody-dependent cell-
mediated cytotoxicity (ADCC) (150, 151). This mechanism 
provides an explanation for the typical necrotic lesions observed 
in the spinal cord, which are characterized by the extensive loss 
of AQP4 and glial fibrillary acidic protein (GFAP), the perivas-
cular deposition of Igs and activated complement, and the 

massive infiltration of macrophages and polymorphonuclear 
leukocytes (39, 152, 153). However, vascular fibrosis and hya-
linization in both active and inactive lesions has not been well 
explained, and a recent finding of glucose-regulated protein 78 
(GRP78) autoantibodies targeting endothelial cells in the serum 
of patients with NMO may provide a new explanation for the 
vascular involvement and disruption of the BBB (154). Second, 
an alternative lesion pattern with prominent loss of AQP4 and 
GFAP but variable absent complement deposition was observed 
in the area postrema (155). Internalization of AQP4 caused by 
AQP4-IgG observed in  vitro was examined in an attempt to 
decipher the lesion pattern (156), but this was debated because 
it does not occur in vivo (18).

AUTOiMMUNe COMORBiDiTieS

Several studies have investigated autoimmune comorbidities 
in patients with MG. Approximately 15% of patients with MG 
are also diagnosed with another autoimmune disorder, which 
most frequently afflicts patients with early-onset AChR-MG (1). 
Among these disorders, autoimmune thyroid disease (ATD) is 
the most common in 10% of patients with MG, followed by SLE 
(1–8%) and RA (4%) (33), and the most common antibodies 
comprise antithyroid peroxidase antibodies, antithyroglobulin 
antibodies, antinuclear antibodies, and rheumatoid factor (157). 
Interestingly, patients with thymoma MG are more susceptible 
to autoimmune disorders after thymectomy than before surgery, 
probably due to an altered T cell repertoire (33).

Associations between NMOSD and other autoimmune 
diseases have also been recognized. Up to 30% of patients with 
NMOSD are diagnosed with a coexisting autoimmune disease, 
and 40% of NMOSD patients present other autoantibodies 
without an obvious accompanying disease (13). The most com-
mon diseases, include SLE, SS, MG, ATD, and antiphospholipid 
syndrome, whereas the most common antibodies comprise anti-
extractable nuclear antigens antibodies, anti-SSA and anti-SSB 
autoantibodies, and rheumatoid factor (13). In most reported 
cases, the onset of SLE preceded NMOSD by several years, 
whereas NMOSD symptoms preceded SS by a few years (158).

Regarding the mechanisms of the associated comorbidities in 
patients with NMOSD, the common genetic and environmental 
factors have been postulated to facilitate autoimmunity, and the 
autoimmune comorbidities might partially contribute to the 
immunopathogenesis of NMOSD (32). Similar mechanisms 
might also apply to the comorbidities in patients with MG.

Of all the abovementioned coexisting diseases, the co-occur-
rence of MG and NMOSD in patients arouses much particular 
interest in researchers, because this is more frequent than expected 
in the general population (159). In one study of 117 patients 
with NMOSD, comorbid MG was identified in 2% of patients, 
and AChR antibodies were detected in 11% of patients (160). In 
another study of 164 patients with MG, 10–15% of patients had 
CNS involvement resembling an NMO-like disease, half of whom 
exhibited AQP4-IgG (161). MG likely has a benign course, but 
CNS involvement is potentially more severe when accompanied 
by thymomas (159, 161). AChR antibodies and AQP4 antibodies 
may precede the onset of the relevant symptoms, and the titers of 
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FiGURe 1 | Schematic diagram of the immunopathogenesis of myasthenia gravis (MG) and neuromyelitis optica (NMO). (Left) In the context of susceptible 
genetic and environmental predisposing factors in MG patients, the TECs secrete IL-6 and IFN I and upregulate acetylcholine receptor (AChR) expression after a 
triggering event such as viral infections. Together with the effects of the cytokines, APCs phagocytose, process, and present the AChR antigen to naïve T cells 
and initiate Th1, Th17, and Tfh subsets differentiation. Th1 cells and APCs generate IFN-γ, IFN I, and IL-6 to sustain and amplify the chronic inflammation. 
Th17 cells produce IL-17 and IL-21 to inhibit Tregs and favor Tfh development. Tfh cells interact with B cells to form germinal centers and promote B cell 
maturation and antibody production with the help of BAFF and IL-6. MBs, PBs, DNs, and PCs enter into the periphery from the thymus, and MBs and DNs also 
differentiate into PBs generating Ab, and PCs migrate into the bone marrow to produce Ab. The Ab can destroy the postsynaptic membrane by promoting 
antigen degradation, blocking functional sites and inducing CDC. (Right) Similar to MG, NMO also develops on the basis of susceptible genetic and 
environmental predisposing factors. During the priming process (for example, due to infection with particular bacteria), APCs phagocytose the pathogen and 
present a specific peptide to naïve T cells, which is identical with a particular peptide sequence in the aquaporin-4 (AQP4) protein. Additionally, APCs secrete IFN 
I to facilitate BAFF generation. The autoreactive naïve T cells then differentiate into Th17 and Tfh subsets. Th17 cells can produce IL-17 and suppress Tregs, and 
help Tfh development. Tfh cells promote cognate B cells maturation and differentiation into MBs, PBs, DNs, and PCs, together with BAFF. The proinflammatory 
MBs can further contribute to APC activation, Th17 differentiation, and B cell maturation through IL-6 and IFN-γ. IL-17 and IL-6 or GRP78 Ab can break the BBB 
and permit MBs, DNs, and PBs to enter into the CNS. The MBs and DNs can also progress to PB to generate Ab, which can target the AQP4 protein in 
astrocytes together with the antibodies produced by PCs in bone marrow. The Ab attack the astrocytes through CDC, which not only forms membrane attack 
complex but also generates C5a and C3a recruiting granulocytes in combination with IL-17, IL-8, and GM-CSF. The granulocytes can further aggravate the CNS 
lesion through ADCC. TEC, thymic epithelial cell; APC, antigen-presenting cell; NT, naïve T cell; Th1, T helper 1 cell; Th2, T helper 2 cell; Th17, T helper 17 cell; 
Treg, regulatory T cell; Tfh, follicular helper T cell; B, B cell; MB, memory B cell; PB, plasmblast; DN, CD27−IgD− double negative B cell; PC, plasma cell; G, 
granulocyte; IL-6, interleukin 6; IL-8, interleukin 8; IL-17, interleukin 17; IFN I, type I interferon; IFN-γ, interferon γ; BAFF, B cell-activating factor; Ab, antibody; C, 
complement; GM-CSF, granulocyte-macrophage colony-stimulating factor; GRP78 Ab, glucose-regulated protein 78 antibody; BBB, blood–brain barrier; ADCC, 
antibody-dependent cell-mediated cytotoxicity; CDC, complement-dependent cytotoxicity; CNS, central nervous system. The red pathway represents the 
specific immune responses in MG, the green pathway refers to the unique immune responses in NMO, and the black pathway is shared by both disorders.  
The “periphery” means outside of thymus in MG and outside of CNS in NMO.
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the two antibodies tend to be negatively correlated (159). In most 
cases, MG symptoms preceded the onset of NMOSD, and only a 
few patients developed MG after NMOSD onset (158). Most of 
these patients had early-onset AChR-MG, and 70% had a history 
of thymectomy (158). AQP4 is expressed in the thymus, and this 
may provide a pathogenic basis similar to that of AChR in MG 
(158). Additionally, the decrease in the number of Tregs following 
thymectomy may further contribute to NMOSD development 
(158). AQP4 is also expressed at the NMJ; thus, the degenera-
tion of the postsynaptic membrane induced by AChR antibodies 
was postulated to initiate AQP4 sensitization in the context of 
the inflammatory environment in MG, and then mediate the  
autoimmunity against AQP4 (161).

SPeCiFiC iNvOLveMeNT OF DiFFeReNT 
TARGeT ORGANS

Nicotinic acetylcholine receptors (nAChRs) are expressed in both 
muscle and brain (34), but MG seldom involves the brain, with 
the exception of rare reports of cognitive impairment, epilepsy, 
Parkinson’s disease, MS, and psychological and sleep disorders 
(35, 161). In addition to the major protective role of the BBB, 
the differences in structure between muscle and neuronal AChRs 
consisting of different subunits might also contribute to the 
brain exemption (34). In fact, antibodies from patients with MG 
do not bind to nAChRs in the human brain (162). In patients 
with AChR-MG, extraocular muscle weakness usually precedes 
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TABLe 1 | The comparison of immunopathogenesis between MG and NMO.

MG NMO

Susceptible gene HLA (AH8.1, HLA-B*08:01, HLA-C*07:01, HLA-DQA1, HLA-DQB1, HLA-
DQB1*05:02, HLA-DQA1, DQ9, HLA-DRB1*09, DQ*5);
non-HLA (CTLA4, TNFRSF11A, ZBTB10, PTPN22, TNIP1, RANKL, CHNRA1, 
CHRND)

HLA (DPB1*1501, DPB1*0501, DRB1*03);
non-HLA (TCR, CD6, TNFRSF1A, CD58, IL-17A, IL-17F, 
CYP7A1 promoter)

MicroRNA miR-150 and miR-21 (↑ in sera) miR-150 and miR-21 (↓in whole blood)

Environmental factors Vitamin D deficiency, Epstein–Barr virus (EBV) Vitamin D deficiency, Clostridium perfringens, EBV, human 
T cell leukemia virus type 1 virus

Gender bias Early-onset AChR-MG, MuSK-MG, and LRP4-MG AQP4-IgG positive patients

T helper 1 (Th1)/Th2/
Th17 cells

Th1/Th2 cells (ND); Th17 cells (↑), serum Th17 cytokines (↑) Th1/Th2 cells (ND); serum and CSF Th17 cytokines (↑)

Treg cells FoxP3 expression (↓) ND

Follicular T cells Follicular helper T cells (Tfh) (↑); follicular regulatory T cells (↓) Follicular Tfh (↑)

B cells B cells (↑ in Thymus); memory B cells (↑ during relapse); serum BAFF levels (↑); 
Bregs (↓), IL-10 and TGF-β1 (↓)

Plasmablasts (↑); memory B cells (↑ during relapse); serum 
and CSF BAFF levels (↑); Bregs (↓)

Antibodies AChR antibodies (80%), MuSK antibodies (1–10%), LRP4 antibodies (1–5%), 
agrin antibodies (minority), titin antibodies (20–30% of AChR-MG), potassium 
voltage-gated channel subfamily A member 4 antibodies (10–20%), ryanodine 
receptor antibodies (70% of MG with thymoma and 14% of late-onset AChR-MG)

AQP4 antibodies (>75%), myelin oligodendrocyte 
glycoprotein antibodies (5–10%), AQP1 antibodies (26%), 
glucose-regulated protein 78 antibodies

Autoimmune 
comorbidities

ATD (10%), SLE (1–8%), RA (4%); TPO antibodies (36%), TG antibodies (23%), 
ANA (23%), rheumatoid factor (8%), AQP4 antibodies (5–7%)

ATD (17%), SLE (2.0%), SS (2.0%), MG (2%), RA (1.3%); 
ANA (43%), ENA (15%), SS-A (10%), SS-B (3%); and 
rheumatoid factor (5%), AChR antibodies (11%)

Inflammatory infiltration B cells and macrophages in the thymus, absent in muscle Polymorphonuclear leukocytes and macrophages in CNS

MG, myasthenia gravis; NMO, neuromyelitis optica; HLA, human leukocyte antigen; CTLA4, cytotoxic T lymphocyte-associated protein 4; TNFRSF, tumor necrosis factor receptor 
superfamily; ZBTB10, zinc finger and BTB domain-containing 10; PTPN22, protein tyrosine phosphatase nonreceptor type 22; TNIP1, tumor necrosis factor alpha-induced protein 
3-interacting protein 1; RANKL, receptor activator of nuclear factor κB ligand; TCR, T cell receptor; CD, cluster of differentiation; IL, interleukin; AChR, acetylcholine receptor; MuSK, 
muscle-specific kinase; LRP4, lipoprotein receptor-related protein 4; AQP4, aquaporin-4; Th, T helper; Treg, regulatory T; FoxP3, forkhead box P3; ND, not determined; BAFF, B-cell-
activating factor; Bregs, regulatory B cells; TGF, transforming growth factor; CSF, cerebrospinal fluid; CNS, central nervous system; ENA, extractable nuclear antigen;  
ANA, antinuclear antibody; ATD, autoimmune thyroid disease; SLE, systemic lupus erythematosus; RA, rheumatoid arthritis.
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generalized muscle weakness, and in patients with ocular MG, 
extraocular muscle weakness is the sole symptom, along with a 
lower titer of AChR antibodies (2, 163). Thus, the extraocular 
muscles are more susceptible to MG and many studies have 
attempted to explain this specificity. First, extraocular muscles 
have special physiological features: the neuron innervating 
extraocular muscles have higher firing frequencies, and the tonic 
fibers in extraocular muscles depend on intact AChR function, 
which reduces the endplate safety factor (30). Second, the expres-
sion of the complement-regulating proteins CD55 and CD59 is 
lower in extraocular muscles than in other muscles (164). Third, 
researchers are still debating whether fetal AChR expressed in 
extraocular muscles is a target of autoimmunity in MG (165).

The NMO target protein AQP4 is expressed not only in the 
CNS but also in some peripheral organs, including the kidney, 
skeletal muscle, stomach, and airways (166); however, the 
peripheral organs are relatively spared, except for a few reports 
of myopathy (36), even though the AQP4-IgG titer is higher in 
the serum than in the CSF (167). Several observations might help 
to explain this question: (i) AQP4 is higher expressed in CNS 
than in peripheral organs (168), (ii) a higher ratio of M23/M1 
AQP4 isoforms with larger orthogonal arrays of particles (OAPs) 
of AQP4 in peripheral organs results in a higher capacity to bind 
to AQP4-IgG and induce CDC (168–171), (iii) the complement 
regulatory proteins CD46, CD55, and CD59 are expressed in 
AQP4-expressing cells in peripheral organs but are absent in the 

astrocytes, as we and others recently reported (36, 37). In addition, 
larger OAPs in the spinal cord and optic nerve than in the brain 
may also contribute to the more frequent and severer involve-
ment of the spinal cord and optic nerve in NMO (168). Even in 
the brain, the typical lesions are distributed in specific location, 
i.e., the hypothalamic and periventricular areas (172). Higher 
AQP4 expression in these areas is thought to be responsible for 
the specific distribution (172). Recently, the involvement of the 
pia, ependyma, and choroid plexus was observed in 23 autopsy 
cases of NMO/NMOSD (173). The disruption of the blood–CSF 
barrier in the choroid plexus was suspected to provide a route for 
AQP4-IgG to enter the CNS (173), and this may offer another 
possible explanation for the aforementioned specific distribution 
in the brain—the areas may be more accessible to the penetra-
tion of AQP4-IgG from the CSF and resemble ventriculitis and 
leptomeningitis in patients with NMO.

THe PANORAMA OF 
iMMUNOPATHOGeNeSiS

In the abovementioned portions, we describe the profiles of the 
immunopathogenesis of both disorders, particularly the early-
onset AChR-MG and AQP4-IgG positive NMO/NMOSD. In 
general, both diseases are T cell-mediated and B cell-dependent 
autoimmune channelopathies on the basis of the susceptible 
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gene and predisposing environmental factors. The schematic of 
immunopathogenesis in MG and NMO is shown in Figure 1, 
and the comparison between them is summarized in Table 1.

After triggering events such as viral infections in patients 
with MG, the TEC secrete IL-6 and IFN I and upregulate 
α-AChR expression. The APCs then phagocytose, process, and 
present a linear peptide of the AChR protein to naïve T cells, 
thus initiating Th1, Th17, and Tfh subset differentiation (29, 92). 
Th1 cells and APCs generate IFN-γ, IFN I, and IL-6 to sustain 
and amplify the chronic inflammation (29, 38). Th17 cells pro-
duce IL-17 and IL-21 to inhibit Tregs and favor Tfh development 
(29, 120). Tfh cells interact with B cells to form GCs and promote 
B cell maturation and AChR antibody production with the help 
of BAFF and IL-6 (120, 140). MBs, PBs, DNs, and PCs enter 
into the periphery from the thymus, MBs, and DNs then also 
differentiate into PBs to generate antibodies, and PCs migrate 
into the bone marrow to persistently produce antibodies  
(140, 141). The antibodies destroy the AChR channel on the 
postsynaptic membrane by promoting antigen degradation, 
blocking functional sites, and inducing CDC (149).

Similar to MG, during the priming process in patients with 
NMO (for example, with infections of some bacterias), APCs 
phagocytose the pathogen and present a specific peptide to naïve 
T cells; this peptide is identical to a peptide sequence in the AQP4 
protein (91). In addtion, APCs secrete IFN I to facilitate BAFF 
generation (111). The autoreactive naïve T cells then differenti-
ate into Th17 and Tfh subsets. Th17  cells can produce IL-17, 
suppress Tregs, and help Tfh development (126, 127). Together 
with BAFF, Tfh cells can promote cognate B cell maturation and 
differentiation into MBs, PBs, DNs, and PCs (111, 137, 174, 175). 
The proinflammatory MBs can further contribute to APC activa-
tion, Th17 differentiation, and B  cell maturation through IL-6 
and IFN-γ (111, 174). IL-17 and IL-6 or GRP78 antibodies can 
break the BBB and permit MBs, DNs, and PBs to enter the CNS 
(126, 127). The MBs and DNs can also progress to PBs to gener-
ate antibodies, which can target the AQP4 protein in astrocytes, 
together with the antibodies produced by PCs in bone marrow 
(175). The antibodies attack the astrocytes through CDC, which 
not only forms MAC but also generates C5a and C3a recruiting 
granulocytes in combination with IL-17, IL-8, and GM-CSF  
(111, 127, 150). The granulocytes can further aggravate the CNS 
lesions through ADCC (150, 176, 177).

At last, it is noteworthy that it is still in debate about the 
classification and the role of the DNs (178, 179). The DNs are 
very likely identical to the atypical memory B  cells, tissue-like 
memory B cells, or age associated B cells (179). The conclusions 
are conflicting if the DNs play an immune boosting or tolerant 
role in autoimmune disease, such as RA or SLE, and chronic 
infection such as human immunodeficiency virus, malaria, or 
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hepatitis C virus (179), which suggest the exact roles of the DNs 
in the development of MG and NMO should be further studied. 
Besides, in addition to promoting the survival and differentia-
tion of autoreactive B cells in mature stage (139), BAFF can also 
facilitate the proliferation and antibody-secretion of immature-
transitional B  cells (180), indirectly promote the expansion of 
Th17  cells in RA and directly regulate the accumulation and 
cytokine-secretion of Tfh cells in SLE (181, 182), which is likely 
to be also involved in the pathogenesis of MG and NMO and 
deserves to be investigated.

CONCLUSiON

Both of MG and NMO are developed on the basis of susceptible 
gene and environmental predisposing factors, which initiate 
the innate immunity and activate the adaptive immunity (29, 
114). The autoreactive T  cells cooperate with cognate B  cells 
to generate effector and memory lymphocytes (29, 31). The 
autoantibodies attack NMJ together with complement in 
MG (29). And the autoantibodies together with complement 
and inflammatory cells destroy CNS after breaking BBB in 
NMO (114). In this review, we summarize the similarities and 
discrepancies between MG and NMO, including the genetics, 
environmental factors, gender bias, innate immunity, adaptive 
immunity, autoimmune comorbidities, and specific involve-
ment. This review will help to improve our understanding of the 
pathogenesis, promote the mutual exchange of information in 
future progress regarding immune mechanisms, and facilitate 
the two-way communication between MG and NMO regarding 
new therapeutic strategies in future clinical trials. In the future, 
the genetic and epigenetic analysis of these patients, especially 
the monozygotic twins, can further unravel the pathogenic basis 
of both diseases; the dynamic detection of the immune cells and 
molecules in these patients, especially those with monoclonal 
antibodies therapy, will clearly decipher the pathogenic process; 
the development of appropriate animal models, especially in 
NMO, will pave the way for the drug development.
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