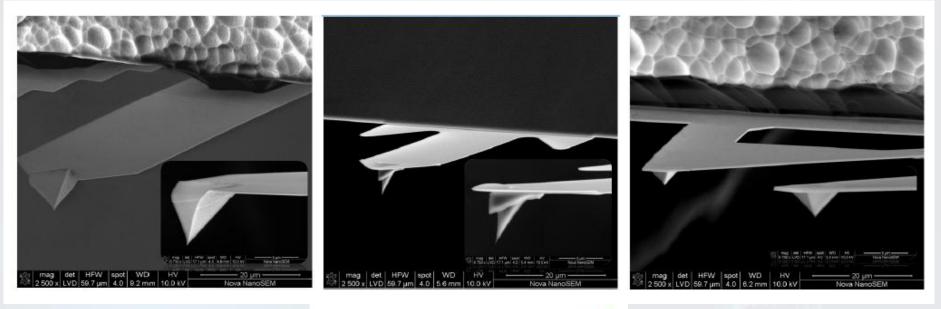


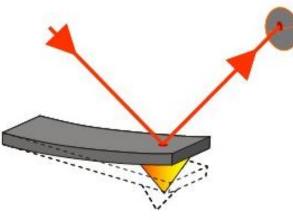
G-Protein Coupled Receptors: Rhodopsin and (engineered) β2AR Thursday, Jan 31st MCDB 4810

Presented by: Matt

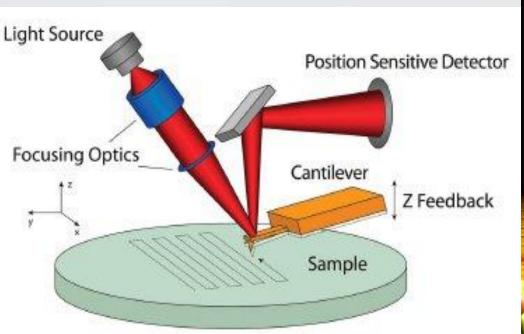
Objectives

- Further our understanding of some of the details of x-ray crystallography of membrane proteins
- Facilitate quick assessment of crystallography data quality
- Speak to the structure of Rhodopsin and β2AR as informed by crystallographic methods

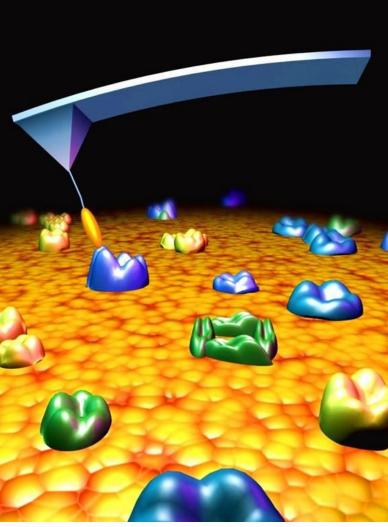

Outline


Revisit from Tuesday: AFM & Electron Density
Representations in crystallography

 The seminal identification of Rhodopsin's structure


 The creative endeavor after the structure of β2AR

Fundamentals of Atomic Force Microscopy

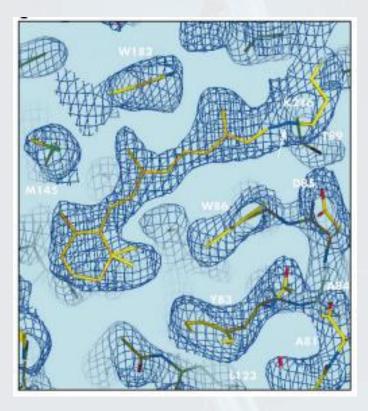


Two modalities: Imaging and Force Spectroscopy

Unrestricted Optical Access from Below the Sample Plane

Discussion

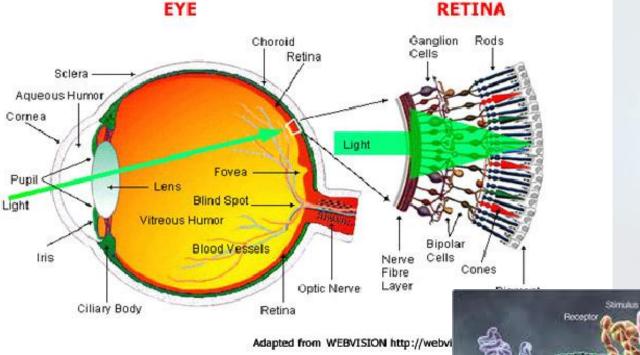
 When are circumstances you might want to use AFM in place of electron beam imaging or x-ray diffraction?

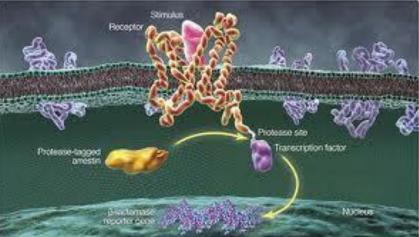

 What are the limits of AFM? Can it be used to inform structural biology on a residue by residue basis? Be careful: there are three types of electron density maps

• F_obs, φ_calc

– Contours plotted to σ

(2F_obs – F_calc), φ_calc
– Contours Plotted to σ

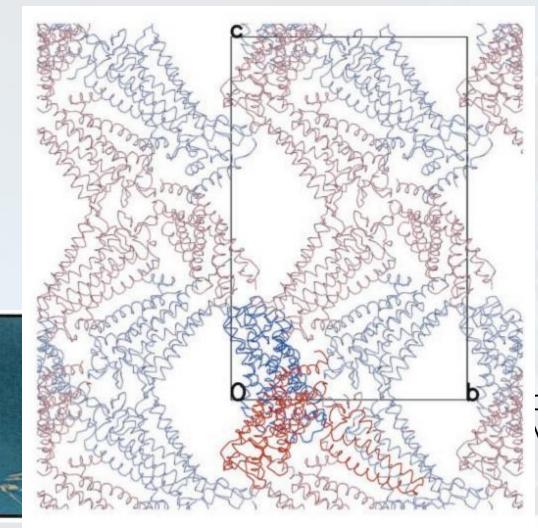

(F_obs – F_calc), φ_calc
– Contours Plotted to 3σ



Discussion

 Why might you consider plotting the difference of your observed and calculated reflections?

GPCRs permit cells high fidelity communication across the membrane

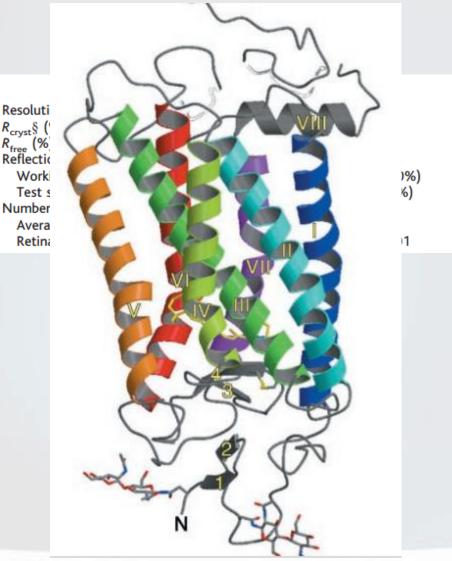

Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor Krzysztof Palczewski, *et al. Science* **289**, 739 (2000); DOI: 10.1126/science.289.5480.739

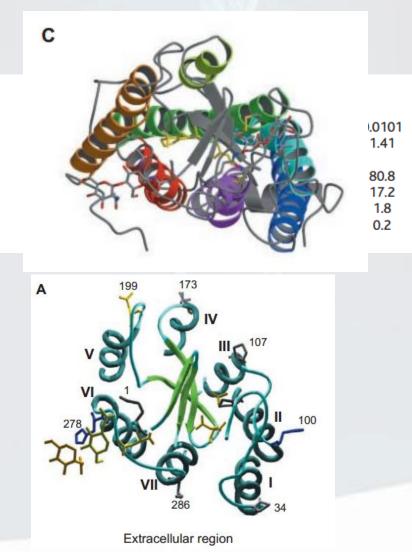
Crystal Structure of Rhodopsin: A G Protein–Coupled Receptor

Krzysztof Palczewski,^{1,2,3}* Takashi Kumasaka,⁷ Tetsuya Hori,^{7,8} Craig A. Behnke,^{4,6} Hiroyuki Motoshima,⁷ Brian A. Fox,^{4,6} Isolde Le Trong,^{5,6} David C. Teller,^{4,6} Tetsuji Okada,¹ Ronald E. Stenkamp,^{5,6}* Masaki Yamamoto,⁷ Masashi Miyano⁷*

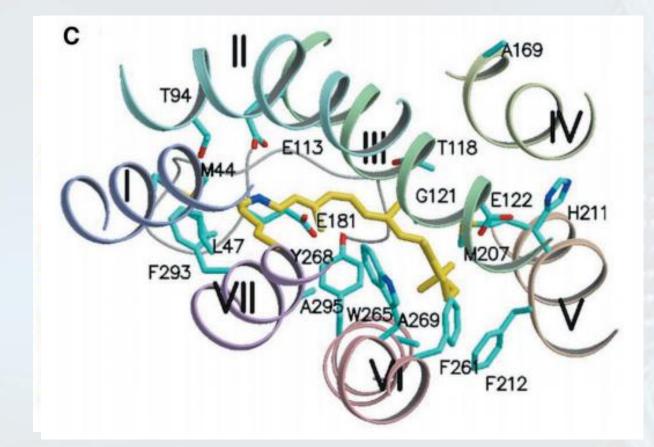
www.sciencemag.org SCIENCE VOL 289 4 AUGUST 2000

Mixed micelles enable crystallization of uniform crystals of bovine Rhodopsin




Cross Polarization Microscopy

Experimental phasing information was gathered using Multi-wavelength Anomalous Diffraction


Space group	Data collection and phasing P4 ₁						
Beamline Unit cell	SPring-8 BL45XU a = 96.73, c = 149.63 Å					APS 19-ID a = 97.25, c = 149.54 Å	
Resolution (Å)	3.3 (MAD)					2.8 (Refine)	
Data set	Remote 1	Edge 1	Peak 1	Remote 2	Edge 2	Peak 2	High resolution
Wavelength (Å)	0.96000	1.00876	1.00800	1.04000	1.00866	1.00700	1.000
Observed reflections	66,421	66,589	66,651	75,521	74,715	73,063	111,245
Unique reflections	20,499	20,529	20,541	20,636	20,613	20,624	33,221
Completeness*	99.0 (99.5)	99.2 (99.7)	99.1 (99.4)	99.4 (99.8)	99.3 (99.7)	99.3 (99.8)	97.1 (80.7)
Ι/σ	12.6 (3.6)	11.9 (3.3)	10.6 (2.6)	11.1 (2.4)	11.7 (3.6)	11.6 (3.2)	7.8 (1.2)
R _{merge} *†	8.5 (39.3)	9.2 (43.6)	10.0 (55.3)	10.6 (54.6)	10.3 (51.3)	10.4 (53.5)	12.1 (69.3)
Phasing power‡	0.0/1.1/-	0.6/1.0/0.4	0.9/1.0/0.7	1.6/1.0/1.1	1.5/1.1/1.1	1.4/1.2/1.0	
Figure of merit Twin fraction	0.37/0.31						0.288
Twin fraction							0.200

The first high resolution structure of a GPCR: Bovine Rhodopsin

The active element: the role of the 11cis-Retinal

Discussion

 Does experimental phasing deserve more weight than molecular replacement?

• How would experimental error of light exposure alter show up in the data?

High-Resolution Crystal Structure of an Engineered Human ² 2-Adrenergic G Protein Coupled Receptor Vadim Cherezov, et al. Science 318, 1258 (2007); DOI: 10.1126/science.1150577

High-Resolution Crystal Structure of an Engineered Human β₂-Adrenergic G Protein–Coupled Receptor

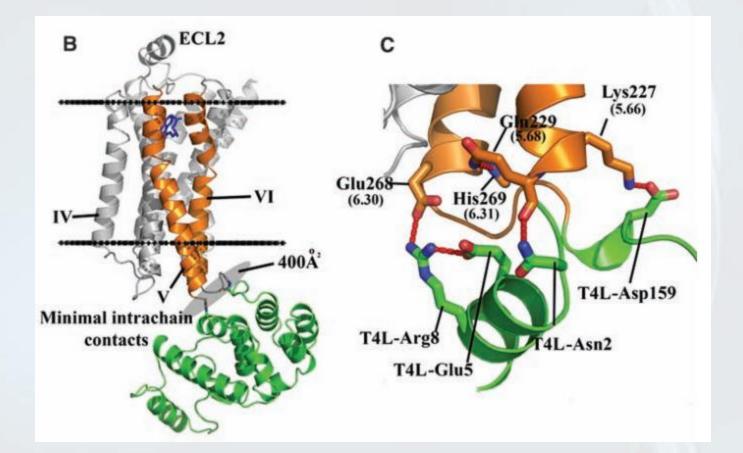
Vadim Cherezov,^{1*} Daniel M. Rosenbaum,^{2*} Michael A. Hanson,¹ Søren G. F. Rasmussen,² Foon Sun Thian,² Tong Sun Kobilka,² Hee-Jung Choi,^{2,3} Peter Kuhn,⁴ William I. Weis,^{2,3} Brian K. Kobilka,²† Raymond C. Stevens¹†

23 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org

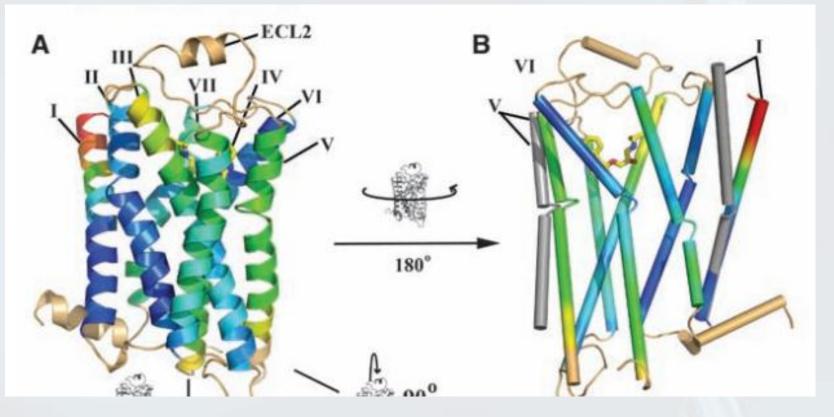
GPCR Engineering Yields High-Resolution Structural Insights into β₂-Adrenergic Receptor Function

Daniel M. Rosenbaum^{1,*}, Vadim Cherezov^{2,*}, Michael A. Hanson², Søren G. F. Rasmussen¹, Foon Sun Thian¹, Tong Sun Kobilka¹, Hee-Jung Choi^{1,3}, Xiao-Jie Yao¹, William I. Weis^{1,3}, Raymond C. Stevens^{2,1}, Brian K. Kobilka^{1,1}

More practice surveying modern data


standards

	β ₂ AK-14L
Data collection (APS GN/CA CA	T 23ID-B, 10-μm beam)*
Space group	C2
Cell dimensions	
a, b, c (Å)	106.3, 169.2, 40.2
β (°)	105.62
Number of reflections	245,571
processed	26 574
Number of unique reflections	26,574
Resolution (Å)	50 to 2.4 (2.5 to 2.4)
	12.7 (67.8)
R _{sym} †	
Mean I/o(I)	9.6 (2.2) 99.5 (99.1)
Completeness (%)	
Redundancy	9.4 (4.8)
Resolution (Å)	nr ⁻ 20 to 2.4 (2.46 to 2.4)
Number of reflections (test set)	
	25,247 (1310)
Rwork / Rfree Number of atoms	19.8 (27.0) / 23.2 (30.3 3805
Protein	3544
lons, lipids, ligand, and other	213
Water	48
Overall B values (Å ²)	40
β ₂ AR	77
T4 lysozyme	75
Carazolol	55
Lipid	100
RMSD	100
Bond lengths (Å)	0.013
Bond angles (°)	1.5
Ramachandran plot statistics (%) (excluding Gly, Pro):	
Most favored regions	94.8
Additionally allowed regions	5.0
Generously allowed regions	0.2
Disallowed regions "Highest-resolution shell is shown in parentheses. $TR_{rem} = \Sigma_{hH}$	0 <i>WhkD — (WhkD)//See(hkD</i> , where (<i>WhkD</i>) is the mean of


*Highest-resolution shell is shown in parentheses. $\uparrow R_{sym} = \Sigma_{hil}$ symmetry-equivalent reflections of *l(hkl)*.

 $R_{sym} = \Sigma_{hkl} |l(hkl) - \langle l(hkl) \rangle | \Sigma_{hkl}(hkl)$, where $\langle l(hkl) \rangle$ is the mean of the

The β2AR-T4L Structure by Lipidic Cubic phase crystallography

The remarkable plasticity of GPCRs enables their diverse roles in communication

Discussion Questions

Why does the lysozyme help crystallization?

Why is carazolol important for β2AR-T4L structure?

What implications does GPCR diversity have for drug design?

Thank you for your time

I hope you feel this class has been worthwhile.