Background

- Photosystems are membrane protein complexes which utilize light to reduce terminal acceptors and make energy
 - Water is oxidized to oxygen. It's electrons are transported through the membrane while H+ are pumped.
 - ATP is generated by the H+ gradient
 - NADPH goes into dark reactions to reduce CO2 and make G3P (the Calvin cycle), a building block of organic molecules
- Type I photosystems use ferredoxin iron-sulfur complexes to accept electrons while type II photosystems use quinones

Background: PSII

- PSII is struck by incident light. An electron in P680 (chlorophyll) is excited.
- A series of electron transfer reactions occurs leading to reduction of Q_B
- Q_A , a plastoquinone, transports the electron to Q_B thereby reducing it and taking up protons.
- The oxidized P680 is reduced through the oxidation of water by the Mn cluster

Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 A resolution

Athina Zouni, Horst-Tobias Witt, Jan Kern, Petra Fromme,, Norbert Krauss, Wolfram Saenger, Peter Orth

Table 1 Crystallographic statistics										
Data collection										
Data set*	Native	Cd	Hgl	Hg II	Hg III	Au	Pt	Native		
Wavelength (Å)	0.934†	0.934†	0.934‡	0.9072‡	0.8439§	0.9072‡	0.8439§	1.894		
Resolution (Å)	20-4.2	20-3.8	20-4.7	20-4.5	20-5.8	20-5.7	20-4.2	20-4.8		
Unique reflections	63,639	84,964	45,429	30,210	21,643	22,458	52,611	48,420		
Redundancy	3.3	3.2	3.0	1.9	2.6	2.8	3.0	2.3		
Completeness (%)	98.1 (98.5)	95.4 (84.5)	95.5 (87.5)	55.0 (52.1)	80.3 (82.7)	86.7 (83.9)	81.1 (81.0)	85.0 (70.7)		
Completeness of Friedel pairs (%)¶	_	_	76.6 (65.8)	59.8 (53.6)	28.0 (18.7)	_	_	55.9 (44.8)		
<u> </u>	12.8 (3.5)#	17.1 (3.4)	14.8 (3.2)	17.5 (2.5)	11.3 (3.5)	12.5 (5.3)	13.3 (3.8)	10.5 (5.0)		
R _{merge} (%)¶	6.8 (28.8)	6.8 (41.8)	4.1 (28.8)	5.4 (30.0)	4.5 (42.1)	6.2 (26.3)	5.0 (35.6)	9.2 (20.0)		
Phasing statistics										
Number of heavy atom sites	—	5	13	16	11	2	6	_		
R _{cullis} (centric)	_	0.92 (0.96)	0.85 (0.85)	0.83 (0.91)	0.70 (0.83)	0.95 (0.99)	0.96 (0.99)	_		
Phasing power#	—	0.78/0.49	1.07/0.73	1.21/0.91	1.12/0.75	0.62/0.44	0.49/0.51	—		
Acentric/centric	_	(0.72/0.52)¶	(1.3/0.76)	(1.02/0.62)	(1.08/0.68)	(0.70/0.51)	(0.42/0.44)			

* Heavy atoms derivatives: Cd, cadmium sulphate; Hg I, ethylmercuriphosphate; Hg II, chloromercuriacetate; Hg III, p-chloromercuriphenylsulphonic acid; Au, potassium dicyanoaurate (I); Pt, potassium tetracyanoplatinate(II).

+ID14-EH1 ESRF.

±X11 DESY.

§ BW7B DESY.

ID13 ESRF.

¶ The numbers in parentheses indicate the values in the highest resolution shell (taken from SCALEPACK²⁶).

Phasing power was calculated between 20 and 4.2 Å.

- CP43 and CP47 contain 12 and 14 chlorophyll a, located between the dimers of the trimer
- Located at the stromal and luminal sides: why?

- Incident light hits P680. It's electron is excited
- Electron must be replaced. Uses electrons from nearby Mn cluster oxidizing water
- Y residues of PSII facilitate electron abstraction from Mn

Electron Transfer Reactions

- TyrZ (Y161) bridges P680 and the Mn cluster
- The Mn cluster bulges in three directions
 - 6.8x4.9x3.3 A

Three-Dimensional structure of cyanobacterial photosystem I at 2.5 A resolution

Patrick Jordan, Petra Fromme, Horst Tobias Witt, Olaf Klukas, Wolfram Saenger & Norbert Krauss

Table 1 Data collection, phasing and refinement statistics

Data set	Native (1)	Native (2)	EMTS	PIP
Wavelength (Å)	0.99	1.44	0.99	0.99
Resolution (Å)	30-2.5	30-2.9	50-3.0	50-3.0
R _{merge} *	0.064 (0.247)	0.079 (0.207)	0.076 (0.224)	0.065 (0.254)
Completeness (%)	97.1 (88.9)	90.4 (76.3)	98.8 (95.6)	93.3 (68.3)
	10.6 (3.4)	10.8 (4.6)	20.5 (8.9)	21.1 (4.2)
Phasing statistics				
No. of heavy atom sites	_	_	4	8
R _{cullis} (centric)†			0.86	0.81
Phasing power (iso/ano)†		-/0.51	1.23/1.03	1.62/1.07
Resolution (Å)	30-2.5	30-3.0	30–3.0	30-3.0
FOM‡	0.57			
Refinement statistics				
Reflections (working set)	233,377		Number of non hydroger	n atoms
Reflections (test set)	4,743		Protein	17,404
Rwork/Rfree (%)	19.8/21.7		Cofactors	6,602
R.m.s.d. bond lengths (Å)	0.0126		Water	201
R.m.s.d. bond angles (°)	1.475		Metal	1
Coordinate error (Å)‡				
Luzzati	0.32			
SigmaA	0.36			

Numbers in parentheses correspond to values in the highest resolution shell. * $R_{merge} = \sum_h \sum_i |l_i(h) - \langle l(h) \rangle | / \sum_h \sum_i l_i(h)$, where $l_i(h)$ are individual intensities of any reflection and $\langle l(h) \rangle$ is the mean intensity. † FOM (figure of merit), R_{cullis} (centric) and phasing power determined by the program SHARP (see Supplementary Information). ‡ From Luzzati plot and SigmaA analyses, as determined with CNS (see Supplementary Information).

Intro to structure

- PS1 exists as a trimer of three monomers, 11 subunits each
 - Each subunit coordinates 100 cofactors
 - The general structure is a photoreaction center surrounded by an antenna system whose job is to funnel excitons to RC core

Overall Architecture

- Cloverleaf structure with C3 axis perpendicular to membrane plane, PsaL in the center forming many monomer-monomer interactions
- 9 TM subunits: Psa-A,B,F,I,J,K,L,M,X and three stromal: Psa-C,D,E
- Cofactors organized into two branches on either side of psuedo-C2 axis, most chlorophylls around PsaA AND PsaB, the business end.

Overall Architecture cntd.

- As mentioned, Psa-E,D,C not TM proteins. Rather, they suggest a docking site from Cyt-c6 or plastocyanin on the lumenal side of the protein
 - Donating e- to PS1
- Structure also suggests stromal side docking for ferredoxin and flavodoxin

PsaC

- PsaC is in the middle of PsaE and PsaD
- It harbors two Fe4S4 clusters Fa and Fb
 - Extending from these clusters is a loop thought to be involved in ferredoxin and flavodoxin binding

- Functionally most important structure of protein
- Consists of 2 phylloquinones, 6 chlorophylls, 3 Fe4S4 clusters
- Arranged in two branches: PsaA and PsaB related by Pseudo C-2 axis
 - PsaA branch is eC-A1, -B2, -A3 and PsaB is eC-B1, -A2, -B3
 - Special pie interaction between eC-A1 and eC-B1 with p700 initiates charge separation

Other Important Cofactors

Antenna System 90 Chla molecules, 22 carotenoids

- 79 of Chla bound to PsaA and PsaB, others coordinated to nearby helices ٠
- Show distribution about psudeo C-2 axis ٠
- Most coordinated through His imidazole moiety, but some through other AA side chains ٠
 - Most important are aC-A40 and aC-B39, which connect to eC-A3 and eC-B3 in antenna-RC hook-up

Carotenoids

- Beta-carotene dominant in PS1
- Deeply inserted into membrane
- Bound to PsaA and PsaB by hydrophobic interactions
- Harvest light in 450-570 nm range
- Contact Chlas to facilitate exciton transfer
- Pie Bond interactions

- PSI works in a similar fashion to PSII. It has a photoreaction center which, upon excitation, promotes an electron to a higher energy level. Instead of p680, PSI uses p700 for this
- The excitons then travel across the membrane (charge separation) to reduce quinones to quinol. The exciton proceeds to reduce NADP+, which reduces CO2 in the dark reactions (Calvin Cycle).

