Part 1 X-ray Crystallography

What happens to electron when it is hit by x-rays?

- 1. The electron starts vibrating with the same frequency as the x-ray beam
- 2. As a result, secondary beams will be scattered in all directions

Scattering from a molecule

- 1. Molecule is composed of many electrons
- 2. Each electron will scatter secondary radiation uppon exposure to x-rays
- 3. The scattered secondary beams will interact and cause interference
- 4. The scattering from a molecule is dependent upon the number of and distances between electrons
- 5. In other words, scattering from molecule is dependent on its atomic structure
- 6. If we would know the amplitudes and phases of scattered molecule, we could calculate the structure of molecule...

In practice...

- Scattering from a single molecule is far too weak to be observed but possible.
- If molecules are all oriented in the same way (like in crystal), the scattering from individual molecules will be multiplied in certain directions

The unit cell and a crystal

•	÷.,1			•*		*	*	**	•		*
¢**	: :	*. *		**	*	**	*	**	*	÷	
;:	:	**		** *		**		:		**	*
 :*:	1	*** ***				.	*	:		3	*
<u>:*</u>		9. 	-	×.	4			*2		•	
		•									
			· · · · · · · · · · · · · · · · · · ·	.: # # # £	Ψ **	*****					
				аз -							

.

The electron density equation

$$\rho(xyz) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F(hkl) \exp\left[-2\pi i(hx + ky + lz) + i\alpha(hkl)\right]$$

- h,k,l indices of reflections
- xyz coordinates
- F amplitude of reflections
- α phase of reflections
- V- unit cell volume

The Phase Problem

- With detector you can measure only the intensity of reflections
- The information about phases is lost there is no such thing as "phase meter" because we have no lenses for x-rays.
- This means, you must obtain phase information in some other way
- For small molecules (<100 atoms), direct methods exist. This means, that you can calculate phases from amplitudes without any extra information.
- Proteins are far too big to use direct methods, so other tools are developed

Isomorphous replacement

- By introducing heavy atoms in protein crystal (by soaking), the diffraction pattern can be altered
- It is possible to determine positions of heavy atoms and from them the phases
- One must use at least 2 different heavy atom soaks
- Problems:
- 1) Unit cell dimensions of crystal might change upon soaking
- 2) Crystal might get destroyed upon soaking and not diffract at all
- 3) Heavy atom ions might not bind in well defined places

Molecular replacement

- Currently the most common technique
- Applicable only if a similar structure already exists (at least 25% sequence identity)
- The phases of known structure are combined with intensities of unknown
- Before that, the known model has to be *in silico* placed in an artifical unit cell in the same orientation and translation from origin as in the structure of interest
- For this, rotation and translation functions exist Problems:
- May not work, if unknown structure is less than 30 % idendical to the known structure
- Model bias what's that?

Phases unknown!

Calculated amplitudes and phases Fourier Manx cat

Observed amplitudes, calculated phases


```
FFT
```

The tail becomes visible!

Be aware – this happens, if structures are not similar enough!!

Model building

- Fitting of protein sequence in the electron density
- Easy in molecular replacement
- More difficult if no initial model is available
- Unambiquous if resolution is high enough (better than 3.0 Å)
- Can be automated, if resolution is close to 2Å or better

3.0Å 4.0Å

Refinement

- Automated improvement of the model, so it explains the observed data better
- The phases get improved as well, so the electron density maps get better

Validation

- Assesment of the final(?) model quality
- How the geometry of amino acids look like? (Ramachandran plot)
- Are non-covalently atoms far enough from each other? (no atom bumps)
- Are residues "happy" in their environment? (hydrophobic in core, polar on surface)
- Are the hydrogen donors/acceptors satisfied?

Part 2 NMR Structure Determination

NMR Interactions

NOE

- a through space correlation (<5Å)
- distance constraint

Coupling Constant (J)

- through bond correlation
- dihedral angle constraint

Chemical Shift (δ)

- very sensitive to local changes in environment
- dihedral angle constraint

Dipolar coupling constants (D)

- bond vector orientation relative to magnetic field
- alignment with bicelles or viruses

COSY- COrrelation SpectroscopY

NOE- Nuclear Overhauser Effect

<u>Nuclear Overhauser Effect (NOE, h)</u> – the change in intensity of an NMR resonance when the transition of another is perturbed, usually by <u>saturation</u>.

 $\eta_i = (I - I_o) / I_o$

where I_o is thermal equilibrium intensity

<u>Saturation</u> – elimination of a population difference between transitions (irradiating one transition with a weak RF field)

Populations and energy levels of a homonuclear AX system (large chemical shift difference)

Observed signals only occur from single-quantum transitions

2D NOESY (Nuclear Overhauser Effect)

NMR Structure Determination

Going from NOESY Data to a structure

2D NOESY Spectra at 900 MHz

Once we complete the Assignment of All the Remaining NOEs in an Iterative Process to Obtain the Structure

Protein Structure Refinement

More Constraints the Better the Structure

NMR Structure Determination

Two Very Important Facts to Remember

- NOEs Reflect the Average Distance
- Protein Structures Are <u>Dynamic</u>

We visualize protein structures as a static image

In reality, protein undergoes wide-ranges of motions (snapshots of 100 BPTI conformations)

Quality of NMR structures

Improving the Quality of NMR Structures

- Stereospecific Assignments
 - Making stereospecific assignments increase the relative number of distance constraints while also tightening the upper bounds of the constraints

There is a direct correlation between the quality of the NMR structure and the number of distance constraints

 \bullet more constraints \rightarrow higher the precision of the structure

Increasing Number of NOE Based Constraints

Part 3

Structure Determination by Electron Microscopy

References and other useful material

- Texts
 - Biophysical Electron Microscopy: Basic Concepts and Modern Techniques by <u>U. Valdre</u> (Editor), <u>Peter W. Hawkes</u> (Editor)
 - Three-Dimensional Electron Microscopy of Macromolecular Assemblies by Joachim Frank
 - Negative Staining and Cryoelectron Microscopy: The Thin Film Techniques by <u>Robin J. Harris</u>, <u>James R. Harris</u>
- Reviews
 - Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. *Q Rev Biophys* 28, 171-93 (1995).
 - Glaeser, R. M. Review: electron crystallography: present excitement, a nod to the past, anticipating the future. J Struct Biol 128, 3-14 (1999).
 - Stowell, M. H., Miyazawa, A. & Unwin, N. Macromolecular structure determination by electron microscopy: new advances and recent results. *Curr Opin Struct Biol* 8, 595-600 (1998).
- Web
 - <u>http://ncmi.bcm.tmc.edu/%7Estevel/spintro/siframes.htm</u>
 - <u>http://cryoem.berkeley.edu/~nieder/em_for_dummies/</u>

Thermionic emission (Shottkey effect)

Electron lenses and "optical path"

Why use electrons....Part 1

?

Why use electrons...Part 2

	Electrons	X-rays		
	80-500keV	1.5 A		
Ratio inelastic/elastic	3	10		
Mechanism of damage	2 nd e ⁻ emission	Photoelectric e ⁻ emission		
Energy per inelastic event	20 eV	8 keV		
Energy per elastic event	60 eV	80 eV		
Energy relative to electrons				
inelastic (Compton)	1	400		
elastic (Rayleigh)	1	1000		

Negative Stain and Cryo

- Negative stain (usually 0.5% uranyl acetate)
 - Easy to prepare
 - Good contrast
 - Preservation
 - Sample distortion
 - Resolution limited to about 20 angstroms
- Cryo
 - Difficult sample prep
 - Low contrast
 - Best preservation and therefore resolution

Negative staining

Bob Horne (Cambridge)

Cryo prep using holey film

- H. Fernandez-moran
- B. Glaeser
- K. Taylor
- J. Dubochet

Aaron Klug

Flash freeze in liquid ethane

Samples

- Single Particles (Proteins, Ribosome)
 - No crystallization
 - Weak amplitude, no diffraction, alignment ambiguity, particle flexibility
 - ~7 angstroms
- Fibers and filaments (tubulin, collagen)
 - No crystallization, 2D distortion corrections, phase restrictions
 - Weak amplitude, no diffraction
 - ~9 angstroms
- 2D crystals (BR, AQP, LHCII)
 - Diffraction amplitudes, 2D distortion corrections, crystallographic methods
 - Crystallization, many tilts required, anisotropic data
 - ~3 angstroms
- Tubular crystals (AchR, Ca⁺⁺-ATPase)
 - Crystallization, No diffraction
 - Isotropic data, 3D distortion corrections, phase restrictions
 - ~5 angstroms

Single particles

- Applicable to any protein or protein complex > 50kD
- Most common sample
- Number of software suites available
- Resolution ~9A (<7 with symmetry)

Fibers and filaments

DNA, collagen, etc

2D Xtals

Henderson and Unwin

Tubular crystals

Rolled 2D xtal

Tubular xtal versus 2D or 3D xtal

Data collection

Image recording

- Film
 - High density content (~20kx16k pixels)
 - Slow (development time, drying)
 - Requires digitization (scanning takes hours)
- CCD
 - Low density content (4kx4k pixels)
 - Fast (ms to sec)
 - Direct digital

Processing data

- Single Particles (Proteins, Ribosome)
 - Pick particles
 - Align
 - Classify, average and reconstruction
- Fibers and filaments (tubulin, collagen)
 - Pick segments determine symmetry
 - Align/rotate
 - Average

• 2D crystals (BR, AQP, LHCII)

- Process images to achieve phases
- Process diffraction data for amplitudes
- Combine and refine as in X-ray

- Tubular crystals (AchR, Ca++-ATPase)
 - Determine tube symmetry
 - Pick segments and distortion correction
 - Average and sum segments

Data processing 1: single particle

Mostly swiped from Steve Ludtke's web site http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc/

Single particle reconstruction

Software

- Spider
 - http://www.wadsworth.org/spider_doc/spider/docs/
 - 1500 + 300/yr for updates, with source
- Imagic
 - http://www.imagescience.de/imagic/welcome.htm
 - Commercial package, \$6000/yr
- EMAN
 - http://ncmi.bcm.tmc.edu/ stevel/EMAN/doc
 - Free, complete with C++ source

The Reconstruction Process

Pick particles (manual or semiauto)

Evaluate Particles

Looking for astigmatism, drift, charging etc....

Now on to the first model

- First rule of thumb...be cautious...
- How to classify particles
 - Reference free classification and alignment

– MSA

- Application of symmetry
- Random conical tilt

Reference free classification MSA

GroEL reference free class averages

Can we tell the symmetry a priori???

MSA.....variance....(SD)²

Random conical tilt

- Image pairs taken of the same sample with an angular tilt applied between them
- Determine particle pairs and construct reference model

Use of common lines to align different orientations

Reconstruction & the Asymmetric Triangle

Refinement - EMAN

Class Averages

Multiple rounds of refinement...

Iteration 1

Iteration 3

Convergence when no improvement in the alignment statistics

Final vs. x- ray

Try different symmetries

Check Other Possibilities

Data processing 2: 2D xtal

Why lattice lines?

Z dimension has an effective real space D of infinity Hence in reciprocal space the lattice spacing is 0

A. Crystallographic parameters Space group (layer group)	P3 (p3)
Lattice constants	$a = b = 62.45 \text{ Å}, \gamma = 120^{\circ}$
Thickness	c = 100 Å (assumed in refinement) 70 Å (used in LATLINE)
B. Electron diffraction (amplitude information)	
No. of diffraction patterns	339
Resolution limit used (Å)	3.0
Maximum tilt angle (deg.)	70.6
No. of observed reflections	110,812
Friedel R-factor (%)	17.6
C. Flasterer mission come (along information)	
C. Electron microscopy (phase information)	101
No. of images	181
Resolution limit used (Å)	3.0
Maximum tilt angle (deg.)	61.2
No. of observed reflections	25,225
D. Merged data	
Resolution (Å)	3.0
No. of unique reflections	6892 (with amplitudes and phases)
Merging R-factor (%)	31.3
Phase residual (deg.)	46.8
Completeness (%)	78.4
E. Refinement	
No. of degrees of freedom	6672 (without hydrogen atoms)
R-factor (%)	23.7
Free R-factor (%)	33.0
Phase residual (deg.)	54.4
Free phase residual (deg.)	63.3

Table 1. Electron crystallographic table

A well refined EM map

Resolution and Resolvability

- Single particles, filaments, tubes

 FSC
 - Which criteria to use (0.5 or 3 sigma)
- 2D xtals diffraction (like X-ray)
 - But anisotropy or point spread function

FSC

Point spread function

Resolution vs Resolvability

- Resolution is a calculated value
 - FSC or measured amplitudes above a certain sigma value.
- Resolvability is a perceived value
 - What can I see in the map
 - Is a 4 angstroms map really 4 angstroms if one cannot discern beta sheet structure?