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Animal cell (eukaryote)
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Table 1.1 A Comparison of Prokaryotic and Eukaryotic Cells

Features held in common by the two types of cells:

Plasma membrane of similar construction

Genetic information encoded in DNA using identical genetic code

Similar mechanisms for transcription and translation of genetic information, including
similar ribosomes

Shared metabolic pathways (e.g., glycolysis andTCA cycle)

Similar apparatus for conservation of chemical energy as ATP (located in the plasma
membrane of prokaryotes and the mitochondrial membrane of eukaryotes)

Similar mechanism of photosynthesis (between cyanobacteria and green plants)
Similar mechanism for synthesizing and inserting membrane proteins

Proteasomes (protein digesting structures) of similar construction (between
archaebacteria and eukaryotes)



Features of eukaryotic cells not found in prokaryotes:

Division of cells into nucleus and cytoplasm, separated by a nuclear envelope containing
complex pore structures

Complex chromosomes composed of DNA and associated proteins that are capable of
compacting into mitotic structures

Complex membranous cytoplasmic organelles (includes endoplasmic reticulum, Golgi
complex, lysosomes, endosomes, peroxisomes, and glyoxisomes)

Specialized cytoplasmic organelles for aerobic respiration (mitochondria) and
photosynthesis (chloroplasts)

Complex cytoskeletal system (including microfilaments, intermediate filaments, and
microtubules) and associated motor proteins

Complex flagella and cilia

Ability to ingest particulate material by enclosure within plasma membrane vesicles
(phagocytosis)

Cellulose-containing cell walls (in plants)

Cell division using a microtubule-containing mitotic spindle that separates chromosomes
Presence of two copies of genes per cell (diploidy), one from each parent

Presence of three different RNA synthesizing enzymes (RNA polymerases)

Sexual reproduction requiring meiosis and fertilization
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Ribosome

Nucleus

David M. Phillips/Photo Researchers, Inc.
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Basic components of a
eukaryotic cell



Model organisms commonly used
In cell biology research




Many cell types in the human body

Bundle of
nerve cells

Loose connective tissue
with fibroblasts

Red blood cells

Smooth
with osteocytes muscle cells

Striated muscle cells

Courtesy Michael Ross, University of Florida



Pluripotent stem cells can be derived from embryos
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Differentiation of embryonic stem (ES) cells into
various cell types

Pancreatic Hematopoletic Cardiomyocytes Neurons Hepatocytes
islet cells cells



Pluripotent stem cells can be derived from adults
(induced pluripotent stem cells, IPS cells)
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The Nobel Prize in
Physiology or Medicine
2012

Photo: U. Montan Photo: U. Montan
Sir John B. Shinya
Gurdon Yamanaka

The Nobel Prize in Physiology or Medicine 2012 was
awarded jointly to Sir John B. Gurdon and Shinya
Yamanaka "for the discovery that mature cells can be
reprogrammed to become pluripotent”
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Carbohydrates/ glycans

Simple sugars/ monosaccharides
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D-Fructose D-Glucose D-Glucose
(Ring Formation) |
(a) (b) (c)
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Oligosaccharides
Sucrose

Lactose

(b)
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Polysaccharides

Jeremy Burgess/Photo
Researchers

(b) Starch

KNEINCONENEONEOND
(c) Cellulose

Biophoto Associates/Photo Researchers, Inc.

Copyright © John Wiley & Sons, Inc. All rights reserved.



Glycerol Fatty . .
moiety acid tail d

oty ¢ Lipids
SRRSO C —

Triacylglycerol ol -\ AN
(triglyceride) | o

(a)
OHHHHHHHHHHHHMHMHMHMHMH
nmoror oo rr

L | | | |
HHHHHHHHHHHMHHMHMHMHMH

22222222 Long-term
ere e rere) energy storage
In animals

(d) Linseed oil
Copyright © John Wiley & Sons, Inc. All rights reserved.



Phospholipid

Phosphate

Polar Glycerol Fatty
head group backbone acid chains
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Polar charged I}IH’L

(IZ=NH
Oy 0 Tl b HC—NH*
0 0 T T T | en
| CH, CH, CH, C—NH
" i " i "
+H3N—(IZ—IC|— 0" +H3N—c|:—ﬁ— 0" +H3N—$—ﬁ— 0" +H3N—$—ﬁ— 0 +H3N—$—ﬁ— 0"
H O H O H O H O H O
Aspartic acid Glutamic acid Lysine Arginine Histidine
(Asp or D) (Glu or E) (Lys or K) (Arg or R) (His or H)

Properties of side chains (R groups):

Hydrophilic side chains act as acids or bases which tend to be fully charged (+ or -) under physiologic
conditions. Side chains form ionic bonds and are often involved in chemical reactions.
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Polar uncharged o NH, 5
c

NH
<|>H $H3 ?IHZ o\\{ ’
sz H—C—OH H, H, CH,
+H3N—(Il—ﬁ— 0" +H3N—$—ﬁ— o +H3N—f—ﬁ— o +H3N—$—ﬁ— 0" +H3N—$—ﬁ— 0"
H O H O H O H O H O
Serine Threonine Glutamine Asparagine Tyrosine
(SerorS) (ThrorT) (GInor Q) (Asn or N) (TyrorY)

Properties of side chains:

Hydrophilic side chains tend to have partial + or - charge allowing them to participate in chemical
reactions, form H-bonds, and associate with water.
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Nonpolar

CH,
|
CH S
CH,\ CH; [ * I -
CH,( CH; ?H c|HZ ?Hz ?CH
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ST 0 ST T ST T S T 0
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Alanine Valine Leucine Isoleucine Methionine Phenylalanine Tryptophan
(AlaorA) (Val orV) (Leuorl) (lleorl) (Met or M) (Phe or F) (Trp or W)

Properties of side chains:

Hydrophobic side chain consists almost entirely of C and H atoms. These amino acids tend to form the
inner core of soluble proteins, buried away from the aqueous medium. They play an important role

in membranes by associating with the lipid bilayer.
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Side chains with unique properties

|
*H,N—C—C-0"

|l

H O

Glycine
(Gly or G)

Side chain consists only of hydrogen
atom and can fit into either a
hydrophilic or hydrophobic
environment.Glycine often resides
at sites where two polypeptides

come into close contact.
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Cysteine

(Cysor Q)
Though side chain has polar,
uncharged character, it has the
unique property of forming a
covalent bond with another

cysteine to form a disulfide link.

CH,—CH,
| [
CH, /cu—ﬁ—o
']‘ 0
+H2
Proline
(Pro or P)

Though side chain has hydro-
phobic character, it has the
unique property of creating
kinks in polypeptide chains
and disrupting ordered
secondary structure.
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Clicker questions will be uploaded into D2L weekly.

A practice exam will be provided in D2L one week
before each actual exam.

TA Office Hours

TA Name Time Location
Kati Buchtel Tuesday 4 - 5:30 Gold A1B16 (Cell Bio Lab Room)
Christine Crotzer | Tuesday 5:30 - 6:30 Gold A1B16 (Cell Bio Lab Room)
Deanna Langager | Thursday 10 - 11:00 2nd Floor Interaction Room

Joy Power’s Office is B126D in Porter. Stop by anytime the door is open. If you need to
set an appointment, use email: Joy.Power@colorado.edu.




Protein folding —to find the lowest energy state
(native conformation)
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Secondary structures — beta sheet

(b)

Part (a) from J. Banaver, Ann Rev. Biophys. Biomol. Struct. 36:268, 2007,

Figs 4d, Figure created by Timothy Lezon. Reprinted with

permission of Annual Reviews.

(c)

(b and c) lllustration, Irving Geis. Image from the Irving Geis Collection/Howard Hughes
Medical Institute. Rights owned by HHMI. Reproduction by permission only.







Tertiary structure of a protein
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Quaternary structure of a protein complex

Heme group b chains

a chains

Hemoglobin



Protein domains

Bacterial
phospholipase C
Troponin C . .

Mammalian
phospho-
lipase C I

Recoverin

From Liisa Holm and Chris Sander, Structure 5:167, (C) 2007, with permission from Elsevier.



How do proteins fold?

Christian Anfinsen
1972 Nobel Prize in Chemistry




Denatured RNase spontaneously folds into
Its native conformation

It denatured RNase is then
returned to native conditions,
it will spontancously refold to
its native conformation.

Heating and treatment with a
chemical-reducing reagent to
break disulfide bonds disrupts
the native conformation,
denaturing the protein.

Disultide bonds

Nalive RNase Denatured RNase Native RNase



Protein folding —to find the lowest energy state
(native conformation)

b Invive protein folding: the effect of
the proteostasis network

In vitro protein folding

ABisuz




Chaperones assist protein folding in the cell

mRNA mRNA (s A
—_— —_— —> RKPs
Ribosome i ||
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Chaperonin QLY
(TRIC)
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DnaK/Hsp 70 chaperones promote protein folding
DnaJ
= > 63 &

ATP //>ATP -DnaK

ypeptide
@ DnaK chaperone system '
v/
ADP DnaK

Grp

I

2]

\




The chaperonin system
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Lumen of endoplastic reticulum
(becomes extracellular space)

NH2 |
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The plasma membrane
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Table 4.1 Lipid Compositions of Some
Biological Membranes*

Human Human Beef heart

Lipid erythrocyte myelin mitochondria E. coli
Phosphatidic acid 1.5 0.5 0 0
Phosphatidylcholine 19 10 39 0
Phosphatidyl-

ethanolamine 18 20 27 65
Phosphatidylgycerol ) 0 ) 18
Phosphatidylserine 8.5 8.5 0.5 0
Cardiolipin 0 0 22.5 12
Sphingomyelin 17.5 8.5 0 0
Glycolipids 10 26 0 0
Cholesterol 25 26 3 0

*The values given are weight percent of total lipid.
Source: C. Tanford, The Hydrophobic Effect, p. 109, copyright 1980, John
Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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Dynamic plasma membrane

Courtesy Gary Freeman ‘

Courtesy Jean Paul Revel

Courtesy Susan Jo Burwen



Fluid-mosaic model
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Synaptic vesicle model




Fluid-mosaic model
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Protein glycosylation Asparagine

e
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H Il |
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CH,OH 2
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Membrane proteins

Integral membrane
(a) proteins
Peripheral membrane protein
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(b) Peripheral
membrane proteins

GPI-anchored protein

Cytoplasm

Lipid-anchored protein
(c)
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Protein-membrane interactions

1

3)URIDS J31A35]3 J0 UoIssiuLAd YIM ‘8007 © ‘8007
L0F:81 °|01g *12n11S *uidQ *1n) ‘SI3YPIY ULIISE]RS pue 3JUNH ejoie) Woi4

-~

I ) )k
AW )




Structure of an integral membrane protein
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Orientation of residues in the membrane

From Anna C.V. Johansson and Erik Lindahl, Biophys. J. 91:4459, 4453, © 2006, with permission from Elsevier.
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Peripheral membrane protein
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Doc2b: a calcium-regulated
peripheral membrane protein

Lipid Bilayer




Solubilization of membrane proteins
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Detergents

CH3—(CH5)11—0S03" Na*t
Sodium dodecyl sulfate (SDS)

CH 5 CH 5
CH; —C —CH, —C @—(O—CHZ — CH,)10—OH
CH 5 CH 5

Triton X-100
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Temperature and membrane structure

(a)
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Fluid Crystalline gel



Table 4.2 Melting Points of the Common
18-Carbon Fatty Acids

Fatty acid cis Double bonds M.p.(°C)
Stearic acid 0 70
Oleic acid 1 13
Linoleic acid 2 —9
Linolenic acid 3 —17
Eicosapentanoic acid (EPA)* 5 —54

*¥*EPA has 20 carbons.
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GPl-anchored
protein

Signaling
protein
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Transverse diffusion (flip-flop)
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Membrane protein dynamics
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Fluorescence recovery
after photobleaching
(FRAP)
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Membrane protein mobility
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Polarized cell
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- Disaccharide
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 generation of ion
gradients
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Membrane proteins

Integral membrane
(a) proteins
Peripheral membrane protein
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(b) Peripheral
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Lipid-anchored protein
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Molecular transport across membranes
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Molecular transport across membranes

Charged molecules

Large polar
molecules

Small polar
molecules

o
23
= =
a o
<SP
S

=
d
> &
B

Gases




Net water gain Net water loss No net loss or gain
Cell swells Cell shrinks

(a) Hypotonic solution (b) Hypertonic solution (c) Isotonic solution
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Molecular transport across membranes
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Facilitative glucose transporter

Outside of cell

Cytosol



Facilitative glucose transporter

Transporters can work in both directions



max

Protein-mediated transport
(facilitated diffusion)

Rate of solute movement (v)

Simple diffusion

-
Solute concentration
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Active glucose transport
(Na*/glucose cotransporter)
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Active transport
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Molecular transport across membranes
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lon channel

lon transport is electrogenic
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K*1on channel
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Voltage-gated K* channel
(L)
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Voltage-gated K* channel Pore

Outside cell Central cavity
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Voltage-gated K* channel

Rest Open Inactivated
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Table 4.3 lon Concentrations Inside and Outside

of a Typical Mammalian Cell

Extracellular Intracellular lonic
concentration concentration gradient
Na* 150 mM 10 mM 15X
K* 5mM 140 mM 28 X
Cl- 120 mM 10 mM 12X
Ca?t 103M 10’M 10,000X
H* 1074M 1072M Nearly 2X
(pH of 7.4) (pH of 7.2)

The ion concentrations for the squid axon are given on page 177.
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Inside

Outside

Na* /K* pump

3 Na“ bind to sites exposed inside
the cell.

At the same time, 2 K* bind to
high-affinity sites exposed on the
cell surface.

The binding of Na* stimulates
ATP-dependent phosphorylation
of the pump.

Phosphorylation exposes the Na*
binding sites to the cell surface
and lowers their binding affinity,
so that Na* is released outside
the cell.

The binding of K* stimulates
dephosphorylation of the pump.

The pump then returns to its
original conformation, releasing
K* inside the cell.




Na*/K* pump

Extracellular
Plasma K Na*
membrane E, conformation 00, 4900 Occluded
,

+
Na «

+
WUDQAC B DOOQEC S DAAC — 9K 1 AN DA

000158 58 1 5 )1 AN | 95995\ 29 SS9 551 A 59549 5 |48 59 58 845 59 45 5% (¥4 f

g ¢ (€ 0K §S (€ d€ & € { b ¢ N € € (¢ -y (€ &

A f il b ) | | AL) |

by ’ "1 ﬁ"“i‘ \’s { ’« iy 95 § ‘ | B 19999 9% 881 G2 15 85 $5 §! > |

§ | SOURCAC ANV Y /] AN 22" i Y2 % % Y% Y Y2 Vsl 0

......

o -4 SES B > N N el

____________________________________________________________________

Cytosol

Copyright © John Wiley & Sons, Inc. All rights reserved.

DA



Cystic fibrosis transmembrane conductance regulator (CFTR)
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Resting potential
sodium gates closed
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Depolarization phase
sodium gates open
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Repolarization phase
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Synaptic transmission
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Axon of nerve cell

Muscle
fiber
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Membrane of
postsynaptic target cell

..- Terminal knob of
’ presynaptic neuron

Don W. Fawcett / T. Reese/Photo Researchers, Inc.
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Synaptic transmission
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Cytoplasmic organelles
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Secretory
granules
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Rat goblet cell
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From Alain Rambourg and Yves Clermont, Eur. J. Cell Biol. 51



endosome cytosol

lysosome

Golgi apparatus

peroxisome
mitochondrion

endoplasmic reticulum
with membrane-bound
polyribosomes

—— nucleus

plasma membrane

Why does the cell need such diverse organelles?



