All organisms are composed of one or more cells.

- The cell is the structural unit of life.

Schleiden and Schwann’s ideas on the origin of cells proved to be less insightful; both agreed that cells could arise from non-cellular materials. Given the prominence that these two scientists held in the scientific world, it took a number of years before observations by other biologists were accepted as demonstrating that cells did not arise in this manner any more than organisms arose by spontaneous generation. By 1855, Rudolf Virchow, a German pathologist, had made a convincing case for the third tenet of the cell theory:

- Cells can arise only by division from a preexisting cell.

1.2 | Basic Properties of Cells

Just as plants and animals are alive, so too are cells. Life, in fact, is the most basic property of cells, and cells are the smallest units to exhibit this property. Unlike the parts of a cell, which simply deteriorate if isolated, whole cells can be removed from a plant or animal and cultured in a laboratory where they will grow and reproduce for extended periods of time. If mistreated, they may die. Death can also be considered one of the most basic properties of life, because only a living entity faces this prospect. Remarkably, cells within the body generally die “by their own hand”—the victims of an internal program that causes cells that are no longer needed or cells that pose a risk of becoming cancerous to eliminate themselves.

The first culture of human cells was begun by George and Martha Gey of Johns Hopkins University in 1951. The cells were obtained from a malignant tumor and named HeLa cells after the donor, Henrietta Lacks. HeLa cells—descended by cell division from this first cell sample—are still being grown in laboratories around the world today (Figure 1.2). Because they are so much simpler to study than cells situated within the body, cells grown in vitro (i.e., in culture, outside the body) have become an essential tool of cell and molecular biologists. In fact, much of the information that will be discussed in this book has been obtained using cells grown in laboratory cultures.

We will begin our exploration of cells by examining a few of their most fundamental properties.

Cells Are Highly Complex and Organized

Complexity is a property that is evident when encountered, but difficult to describe. For the present, we can think of complexity in terms of order and consistency. The more complex a structure, the greater the number of parts that must be in their proper place, the less tolerance of errors in the nature and interactions of the parts, and the more regulation or control that must be exerted to maintain the system. Cellular activities can be remarkably precise. DNA duplication, for example, occurs with an error rate of less than one mistake every ten million nucleotides incorporated—and most of these are quickly corrected by an elaborate repair mechanism that recognizes the defect.

During the course of this book, we will have occasion to consider the complexity of life at several different levels. We will discuss the organization of atoms into small-sized molecules; the organization of these molecules into giant polymers; and the organization of different types of polymeric molecules into complexes, which in turn are organized into subcellular organelles and finally into cells. As will be apparent, there is a great deal of consistency at every level. Each type of cell has a consistent appearance when viewed under a high-powered electron microscope; that is, its organelles have a particular shape and location, from one individual of a species to another. Similarly, each type of organelle has a consistent composition of macromolecules, which are arranged in a predictable pattern. Consider the cells lining your intestine that are responsible for removing nutrients from your digestive tract (Figure 1.3).

The epithelial cells that line the intestine are tightly connected to each other like bricks in a wall. The apical ends of these cells, which face the intestinal channel, have long processes (microvilli) that facilitate absorption of nutrients. The microvilli are able to project outward from the apical cell surface because they contain an internal skeleton made of filaments, which in turn are composed of protein (actin) monomers polymerized in a characteristic array. At their basal ends, intestinal cells have large numbers of mitochondria that provide the energy required to fuel various membrane transport processes. Each mitochondrion is composed of a defined pattern of internal membranes, which in turn are composed of...
Figure 1.3 Levels of cellular and molecular organization. The brightly colored photograph of a stained section shows the microscopic structure of a villus of the wall of the small intestine, as seen through the light microscope. Inset 1 shows an electron micrograph of the epithelial layer of cells that lines the inner intestinal wall. The apical surface of each cell, which faces the channel of the intestine, contains a large number of microvilli involved in nutrient absorption. The basal region of each cell contains large numbers of mitochondria, where energy is made available to the cell. Inset 2 shows the apical microvilli; each microvillus contains a bundle of microfilaments. Inset 3 shows the actin protein subunits that make up each microfilament. Inset 4 shows an individual mitochondrion similar to those found in the basal region of the epithelial cells. Inset 5 shows a portion of an inner membrane of a mitochondrion including the stalked particles (upper arrow) that project from the membrane and correspond to the sites where ATP is synthesized. Insets 6 and 7 show molecular models of the ATP-synthesizing machinery, which is discussed at length in Chapter 5. (Light micrograph Cecil Fox/Photo Researchers; inset 1 courtesy of Shakti P. Kapur, Georgetown University Medical Center; inset 2 from Mark S. Mooseker and Lewis G. Tilney, J. Cell. Biol. 67:729, 1975, reproduced with permission of the Rockefeller University Press; inset 3 courtesy of Kenneth C. Holmes; inset 4 Keith R. Porter/Photo Researchers; inset 5 courtesy of Humberto Fernandez-Moran; inset 6 courtesy of Roderick A. Capalde; inset 7 courtesy of Wolfgang Junge, Holger Lill, and Siegfried Engelbrecht, University of Osnabrück, Germany.)
a consistent array of proteins, including an electrically powered ATP-synthesizing machine that projects from the inner membrane like a ball on a stick. Each of these various levels of organization is illustrated in the insets of Figure 1.3.

Fortunately for cell and molecular biologists, evolution has moved rather slowly at the levels of biological organization with which they are concerned. Whereas a human and a cat, for example, have very different anatomical features, the cells that make up their tissues, and the organelles that make up their cells, are very similar. The actin filament portrayed in Figure 1.3, Inset 3, and the ATP-synthesizing enzyme of Inset 6 are virtually identical to similar structures found in such diverse organisms as humans, snails, yeast, and redwood trees. Information obtained by studying cells from one type of organism often has direct application to other forms of life. Many of the most basic processes, such as the synthesis of proteins, the conservation of chemical energy, or the construction of a membrane, are remarkably similar in all living organisms.

Cells Possess a Genetic Program and the Means to Use It

Organisms are built according to information encoded in a collection of genes, which are constructed of DNA. The human genetic program contains enough information, if converted to words, to fill millions of pages of text. Remarkably, this vast amount of information is packaged into a set of chromosomes that occupies the space of a cell nucleus—hundreds of times smaller than the dot on this i.

Genes are more than storage lockers for information: they constitute the blueprints for constructing cellular structures, the directions for running cellular activities, and the program for making more of themselves. The molecular structure of genes allows for changes in genetic information (mutations) that lead to variation among individuals, which forms the basis of biological evolution. Discovering the mechanisms by which cells use and transmit their genetic information has been one of the greatest achievements of science in recent decades.

Cells Are Capable of Producing More of Themselves

Just as individual organisms are generated by reproduction, so too are individual cells. Cells reproduce by division, a process in which the contents of a “mother” cell are distributed into two “daughter” cells. Prior to division, the genetic material is faithfully duplicated, and each daughter cell receives a complete and equal share of genetic information. In most cases, the two daughter cells have approximately equal volume. In some cases, however, as occurs when a human oocyte undergoes division, one of the cells can retain nearly all of the cytoplasm, even though it receives only half of the genetic material (Figure 1.4).

Cells Acquire and Utilize Energy

Every biological process requires the input of energy. Virtually all of the energy utilized by life on the Earth’s surface arrives in the form of electromagnetic radiation from the sun. The energy of light is trapped by light-absorbing pigments present in the membranes of photosynthetic cells (Figure 1.5). Light energy is converted by photosynthesis into chemical energy that is stored in energy-rich carbohydrates, such as sucrose or starch. For most animal cells, energy arrives prepackaged, often in the form of the sugar glucose. In humans, glucose is released by the liver into the blood where it circulates through the body delivering chemical energy to all the cells. Once in a cell, the glucose is disassembled in such a way that its energy content can be stored in a readily available form (usually as ATP) that is later put to use in running all of the cell’s myriad energy-requiring activities. Cells expend an enormous amount of energy simply breaking down and rebuilding the macromolecules and organelles of which they are made. This continual “turnover,” as it is called, maintains the integrity of cell components in the face of inevitable wear and tear and enables the cell to respond rapidly to changing conditions.

Figure 1.4 Cell reproduction. This mammalian oocyte has recently undergone a highly unequal cell division in which most of the cytoplasm has been retained within the large oocyte, which has the potential to be fertilized and develop into an embryo. The other cell is a nonfunctional remnant that consists almost totally of nuclear material (indicated by the blue-staining chromosomes, arrow). (Courtesy of Jonathan Van Blerkom.)

Figure 1.5 Acquiring energy. A living cell of the filamentous alga *Spirogyra*. The ribbon-like chloroplast, which is seen to zigzag through the cell, is the site where energy from sunlight is captured and converted to chemical energy during photosynthesis. (M. I. Walker/Photo Researchers, Inc.)
Cells Carry Out a Variety of Chemical Reactions

Cells function like miniaturized chemical plants. Even the simplest bacterial cell is capable of hundreds of different chemical transformations, none of which occurs at any significant rate in the inanimate world. Virtually all chemical changes that take place in cells require enzymes—molecules that greatly increase the rate at which a chemical reaction occurs. The sum total of the chemical reactions in a cell represents that cell’s metabolism.

Cells Engage in Mechanical Activities

Cells are sites of bustling activity. Materials are transported from place to place, structures are assembled and then rapidly disassembled, and, in many cases, the entire cell moves itself from one site to another. These types of activities are based on dynamic, mechanical changes within cells, many of which are initiated by changes in the shape of “motor” proteins. Motor proteins are just one of many types of molecular “machines” employed by cells to carry out mechanical activities.

Cells Are Able to Respond to Stimuli

Some cells respond to stimuli in obvious ways; a single-celled protist, for example, moves away from an object in its path or moves toward a source of nutrients. Cells within a multicellular plant or animal respond to stimuli less obviously. Most cells are covered with receptors that interact with substances in the environment in highly specific ways. Cells possess receptors to hormones, growth factors, and extracellular materials, as well as to substances on the surfaces of other cells. A cell’s receptors provide pathways through which external stimuli can evoke specific responses in target cells. Cells may respond to specific stimuli by altering their metabolic activities, moving from one place to another, or even committing suicide.

Cells Are Capable of Self-Regulation

In recent years, a new term has been used to describe cells: robustness. Cells are robust, that is, hearty or durable, because they are protected from dangerous fluctuations in composition and behavior. Should such fluctuations occur, specific feedback circuits are activated that serve to return the cell to the appropriate state. In addition to requiring energy, maintaining a complex, ordered state requires constant regulation. The importance of a cell’s regulatory mechanisms becomes most evident when they break down. For example, failure of a cell to correct a mistake when it duplicates its DNA may result in a debilitating mutation, or a breakdown in a cell’s growth-control safeguards can transform the cell into a cancer cell with the capability of destroying the entire organism. We are gradually learning how a cell controls its activities, but much more is left to discover.

Consider the following experiment conducted in 1891 by Hans Driesch, a German embryologist. Driesch found that he could completely separate the first two or four cells of a sea urchin embryo and each of the isolated cells would proceed to develop into a normal embryo (Figure 1.6). How can a cell that is normally destined to form only part of an embryo regulate its own activities and form an entire embryo? How does the isolated cell recognize the absence of its neighbors, and how does this recognition redirect the entire course of the cell’s development? How can a part of an embryo have a sense of the whole? We are not able to answer these questions much better today than we were more than a hundred years ago when the experiment was performed.

Throughout this book we will be discussing processes that require a series of ordered steps, much like the assembly-line construction of an automobile in which workers add, move, or make specific adjustments as the car moves along. In the cell, the information for product design resides in the nucleic acids, and the construction workers are primarily proteins. It is the presence of these two types of macromolecules that, more than any other factor, sets the chemistry of the cell apart from that of the nonliving world. In the cell, the workers must act without the benefit of conscious direction. Each step of a process must occur spontaneously in such a way that the next step is automatically triggered. In many ways, cells operate in a manner analogous to the orange-squeezing contraction discovered by “The Professor” and shown in Figure 1.7. Each type of cellular activity requires a unique set of highly complex molecular tools and machines—the products of eons of natural selection and biological evolution.
A primary goal of biologists is to understand the molecular structure and role of each component involved in a particular activity, the means by which these components interact, and the mechanisms by which these interactions are regulated.

Cells Evolve

How did cells arise? Of all the major questions posed by biologists, this question may be the least likely ever to be answered. It is presumed that cells evolved from some type of precellular life form, which in turn evolved from nonliving organic materials that were present in the primordial seas. Whereas the origin of cells is shrouded in near-total mystery, the evolution of cells can be studied by examining organisms that are alive today. If you were to observe the features of a bacterial cell living in the human intestinal tract (see Figure 1.18a) and a cell that is part of the lining of that tract (Figure 1.3), you would be struck by the differences between the two cells. Yet both of these cells, as well as all other cells that are present in living organisms, share many features, including a common genetic code, a plasma membrane, and ribosomes. According to one of the tenets of modern biology, all living organisms have evolved from a single, common ancestral cell that lived more than three billion years ago. Because it gave rise to all the living organisms that we know of, this ancient cell is often referred to as the *last universal common ancestor* (or *LUCA*). We will examine some of the events that occurred during the evolution of cells in the Experimental Pathways at the end of the chapter. Keep in mind that evolution is not simply an event of the past, but an ongoing process that continues to modify the properties of cells that will be present in organisms that have yet to appear.

1.3 | Two Fundamentally Different Classes of Cells

Once the electron microscope became widely available, biologists were able to examine the internal structure of a wide variety of cells. It became apparent from these studies that there were two basic classes of cells—prokaryotic and eukaryotic—distinguished by their size and the types of internal structures, or *organelles*, that they contain (Figure 1.8). The existence of two distinct classes of cells, without any known intermediates, represents one of the most fundamental evolutionary divisions in the biological world. The structurally simpler *prokaryotic* cells include bacteria, whereas the structurally more complex *eukaryotic* cells include protists, fungi, plants, and animals.¹

We are not sure when prokaryotic cells first appeared on Earth. Evidence of prokaryotic life has been obtained from rocks approximately 2.7 billion years of age. Not only do these

¹Those interested in examining a proposal to do away with the concept of prokaryotic versus eukaryotic organisms can read a brief essay by N. R. Pace in *Nature* 441:289, 2006.
rocks contain what appears to be fossilized microbes, they contain complex organic molecules that are characteristic of particular types of prokaryotic organisms, including cyanobacteria. It is unlikely that such molecules could have been synthesized abiotically, that is, without the involvement of living cells. Cyanobacteria almost certainly appeared by 2.4 billion years ago, because that is when the atmosphere became infused with molecular oxygen (O\textsubscript{2}), which is a by-product of the photosynthetic activity of these prokaryotes. The dawn of the age of eukaryotic cells is also shrouded in uncertainty. Complex multicellular animals appear rather suddenly in the fossil record approximately 600 million years ago, but there is considerable evidence that simpler eukaryotic organisms were present on Earth more than one billion years earlier. The estimated time of appearance on Earth of several major groups of organisms is depicted in Figure 1.9. Even a superficial examination of Figure 1.9 reveals how “quickly” life arose following the formation of Earth and cooling of its surface, and how long it took for the subsequent evolution of complex animals and plants.

Characteristics That Distinguish Prokaryotic and Eukaryotic Cells

The following brief comparison between prokaryotic and eukaryotic cells reveals many basic differences between the two types, as well as many similarities (see Figure 1.8). The similarities and differences between the two types of cells are
listed in Table 1.1. The shared properties reflect the fact that eukaryotic cells almost certainly evolved from prokaryotic ancestors. Because of their common ancestry, both types of cells share an identical genetic language, a common set of metabolic pathways, and many common structural features. For example, both types of cells are bounded by plasma membranes of similar construction that serve as a selectively permeable barrier between the living and nonliving worlds. Both types of cells may be surrounded by a rigid, nonliving cell wall that protects the delicate life form within. Although the cell walls of prokaryotes and eukaryotes may have similar functions, their chemical composition is very different.

Internally, eukaryotic cells are much more complex—both structurally and functionally—than prokaryotic cells (Figure 1.8). The difference in structural complexity is evident in

Figure 1.8 (continued)
Table 1.1 A Comparison of Prokaryotic and Eukaryotic Cells

<table>
<thead>
<tr>
<th>Features held in common by the two types of cells:</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Plasma membrane of similar construction</td>
</tr>
<tr>
<td>■ Genetic information encoded in DNA using identical genetic code</td>
</tr>
<tr>
<td>■ Similar mechanisms for transcription and translation of genetic information, including similar ribosomes</td>
</tr>
<tr>
<td>■ Shared metabolic pathways (e.g., glycolysis and TCA cycle)</td>
</tr>
<tr>
<td>■ Similar apparatus for conservation of chemical energy as ATP (located in the plasma membrane of prokaryotes and the mitochondrial membrane of eukaryotes)</td>
</tr>
<tr>
<td>■ Similar mechanism of photosynthesis (between cyanobacteria and green plants)</td>
</tr>
<tr>
<td>■ Similar mechanism for synthesizing and inserting membrane proteins</td>
</tr>
<tr>
<td>■ Proteasomes (protein digesting structures) of similar construction (between archaea bacteria and eukaryotes)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features of eukaryotic cells not found in prokaryotes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Division of cells into nucleus and cytoplasm, separated by a nuclear envelope containing complex pore structures</td>
</tr>
<tr>
<td>■ Complex chromosomes composed of DNA and associated proteins that are capable of compacting into mitotic structures</td>
</tr>
<tr>
<td>■ Complex membranous cytoplasmic organelles (includes endoplasmic reticulum, Golgi complex, lysosomes, endosomes, peroxisomes, and glyoxisomes)</td>
</tr>
<tr>
<td>■ Specialized cytoplasmic organelles for aerobic respiration (mitochondria) and photosynthesis (chloroplasts)</td>
</tr>
<tr>
<td>■ Complex cytoskeletal system (including microfilaments, intermediate filaments, and microtubules) and associated motor proteins</td>
</tr>
<tr>
<td>■ Complex flagella and cilia</td>
</tr>
<tr>
<td>■ Ability to ingest particulate material by enclosure within plasma membrane vesicles (phagocytosis)</td>
</tr>
<tr>
<td>■ Cellulose-containing cell walls (in plants)</td>
</tr>
<tr>
<td>■ Cell division using a microtubule-containing mitotic spindle that separates chromosomes</td>
</tr>
<tr>
<td>■ Presence of two copies of genes per cell (diploidy), one from each parent</td>
</tr>
<tr>
<td>■ Presence of three different RNA synthesizing enzymes (RNA polymerases)</td>
</tr>
<tr>
<td>■ Sexual reproduction requiring meiosis and fertilization</td>
</tr>
</tbody>
</table>

The cytoplasmic membranes of eukaryotic cells form a system of interconnecting channels and vesicles that function in the transport of substances from one part of a cell to another, as well as between the inside of the cell and its environment. Because of their small size, directed intracytoplasmic communication is less important in prokaryotic cells, where the necessary movement of materials can be accomplished by simple diffusion.

Eukaryotic cells also contain numerous structures lacking a surrounding membrane. Included in this group are the elongated tubules and filaments of the cytoskeleton, which participate in cell contractility, movement, and support. It was thought for many years that prokaryotic cells lacked any trace of a cytoskeleton, but primitive cytoskeletal filaments have been found in bacteria. It is still fair to say that the prokaryotic cytoskeleton is much simpler, both structurally and functionally, than that of eukaryotes. Both eukaryotic and prokaryotic cells possess ribosomes, which are nonmembranous particles that function as “workbenches” on which the proteins of the cell are manufactured. Even though ribosomes of prokaryotic and eukaryotic cells have considerably different dimensions (those of prokaryotes are smaller and

The electron micrographs of a bacterial and an animal cell shown in Figures 1.18a and 1.10, respectively. Both contain a nuclear region, which houses the cell’s genetic material, surrounded by cytoplasm. The genetic material of a prokaryotic cell is present in a nucleoid: a poorly demarcated region of the cell that lacks a boundary membrane to separate it from the surrounding cytoplasm. In contrast, eukaryotic cells possess a nucleus: a region bounded by a complex membranous structure called the nuclear envelope. This difference in nuclear structure is the basis for the terms prokaryotic (pro = before, karyon = nucleus) and eukaryotic (eu = true, karyon = nucleus). Prokaryotic cells contain relatively small amounts of DNA; the DNA content of bacteria ranges from about 600,000 base pairs to nearly 8 million base pairs and encodes between about 500 and several thousand proteins.\(^2\) Although a “simple”

\(^{2}\)Eight million base pairs is equivalent to a DNA molecule nearly 3 mm long.
Figure 1.10 The structure of a eukaryotic cell. This epithelial cell lines the male reproductive tract in the rat. A number of different organelles are indicated and depicted in schematic diagrams around the border of the figure. (DAVID M. PHILLIPS/PHOTO RESEARCHERS, INC.)
contain fewer components), these structures participate in the assembly of proteins by a similar mechanism in both types of cells. Figure 1.11 is a colorized electron micrograph of a portion of the cytoplasm near the thin edge of a single-celled eukaryotic organism. This is a region of the cell where membrane-bound organelles tend to be absent. The micrograph shows individual filaments of the cytoskeleton (red) and other large macromolecular complexes of the cytoplasm (green). Most of these complexes are ribosomes. It is evident from this type of image that the cytoplasm of a eukaryotic cell is extremely crowded, leaving very little space for the soluble phase of the cytoplasm, which is called the cytosol.

Other major differences between eukaryotic and prokaryotic cells can be noted. Eukaryotic cells divide by a complex process of mitosis in which duplicated chromosomes condense into compact structures that are segregated by an elaborate microtubule-containing apparatus (Figure 1.12). This apparatus, which is called a mitotic spindle, allows each daughter cell to receive an equivalent array of genetic material. In prokaryotes, there is no compaction of the chromosome and no mitotic spindle. The DNA is duplicated, and the two copies are separated accurately by the growth of an intervening cell membrane.

For the most part, prokaryotes are nonsexual organisms. They contain only one copy of their single chromosome and have no processes comparable to meiosis, gamete formation, or true fertilization. Even though true sexual reproduction is lacking among prokaryotes, some are capable of conjugation, in which a piece of DNA is passed from one cell to another (Figure 1.13). However, the recipient almost never receives a whole chromosome from the donor, and the condition in which the recipient cell contains both its own and its partner’s DNA is fleeting. The cell soon reverts back to possession of a single chromosome. Although prokaryotes may not be as efficient as eukaryotes in exchanging DNA with other members of their own species, they are more adept than eukaryotes at picking up and incorporating foreign DNA from their environment, which has had considerable impact on microbial evolution (page 29).

Eukaryotic cells possess a variety of complex locomotor mechanisms, whereas those of prokaryotes are relatively simple. The movement of a prokaryotic cell may be accomplished by a thin protein filament, called a flagellum, which protrudes from the cell and rotates (Figure 1.14a). The rotations of the flagellum, which can exceed 1000 times per second, exert pressure against the surrounding fluid, propelling the cell through the medium. Certain eukaryotic cells, including many protists and sperm cells, also possess flagella, but the eukaryotic versions are much more complex than the simple protein filaments of bacteria (Figure 1.14b), and they generate movement by a different mechanism.

In the preceding paragraphs, many of the most important differences between the prokaryotic and eukaryotic levels of cellular organization were mentioned. We will elaborate on many of these points in later chapters. Before you dismiss prokaryotes as inferior, keep in mind that these organisms have remained on Earth for more than three billion years, and at this very moment, trillions of them are clinging to the outer...
Two Fundamentally Different Classes of Cells

The surface of your body and feasting on the nutrients within your digestive tract. We think of these organisms as individual, solitary creatures, but recent insights have shown that they live in complex, multispecies communities called biofilms. The layer of plaque that grows on our teeth is an example of a biofilm. Different cells in a biofilm may carry out different specialized activities, not unlike the cells in a plant or an animal. Consider also that, metabolically, prokaryotes are very sophisticated, highly evolved organisms. For example, a bacterium, such as *Escherichia coli*, a common inhabitant of both the human digestive tract and the laboratory culture dish, has the ability to live and prosper in a medium containing one or two low-molecular-weight organic compounds and a few inorganic ions. Other bacteria are able to live on a diet consisting solely of inorganic substances. One species of bacteria has been found in wells more than a thousand meters below the Earth’s surface living on basalt rock and molecular hydrogen (H\textsubscript{2}) produced by inorganic reactions. In contrast, even the most metabolically talented cells in your body require a variety of organic compounds, including a number of vitamins and other essential substances they cannot make on their own. In fact, many of these essential dietary ingredients are produced by the bacteria that normally live in the large intestine.

Figure 1.13 Bacterial conjugation. Electron micrograph showing a conjugating pair of bacteria joined by a structure of the donor cell, termed the F pilus, through which DNA is thought to be passed. (COURTESY OF CHARLES C. BRINTON, JR., AND JUDITH CARNAHAN.)

Figure 1.14 The difference between prokaryotic and eukaryotic flagella. (a) The bacterium *Salmonella* with its numerous flagella. Inset shows a high-magnification view of a portion of a single bacterial flagellum, which consists largely of a single protein called flagellin. (b) Each of these human sperm cells is powered by the undulatory movements of a single flagellum. The inset shows a cross section of the central core of a mammalian sperm flagellum. The flagella of eukaryotic cells are so similar that this cross section could just as well have been taken of a flagellum from a protist or green alga. (A: FROM BERNARD R. GERBER, LEWIS M. ROUTLEDGE, AND SHIRO TAKASHIMA, J. MOL. BIOL. 71:322, © 1972, WITH PERMISSION FROM ELSEVIER. INSET COURTESY OF JULIUS ADLER AND M. L. DEPAMPHILIS; B: JUERGEN BERGER/PHOTO RESEARCHERS, INC.; INSET: DON W. FAWCETT/PHOTO RESEARCHERS, INC.)
Types of Prokaryotic Cells

The distinction between prokaryotic and eukaryotic cells is based on structural complexity (as detailed in Table 1.1) and not on phylogenetic relationship. Prokaryotes are divided into two major taxonomic groups, or domains: the Archaea (or archaeabacteria) and the Bacteria (or eubacteria). Members of the Archaea are more closely related to eukaryotes than they are to the other group of prokaryotes (the Bacteria). The experiments that led to the discovery that life is represented by three distinct branches are discussed in the Experimental Pathways at the end of the chapter.

The domain Archaea includes several groups of organisms whose evolutionary ties to one another are revealed by similarities in the nucleotide sequences of their nucleic acids. The best known Archaea are species that live in extremely inhospitable environments; they are often referred to as “extremophiles.” Included among the Archaea are the methanogens [prokaryotes capable of converting CO\(_2\) and H\(_2\) gases into methane (CH\(_4\) gas); the halophiles (prokaryotes that live in extremely salty environments, such as the Dead Sea or certain deep sea brine pools that possess a salinity equivalent to 5M MgCl\(_2\)_]; acidophiles (acid-loving prokaryotes that thrive at a pH as low as 0, such as that found in the drainage fluids of abandoned mine shafts); and thermophiles (prokaryotes that live at very high temperatures). Included in this last-named group are hyperthermophiles, which live in the hydrothermal vents of the ocean floor. The latest record holder among this group has been named “strain 121” because it is able to grow and divide in superheated water at a temperature of 121°C, which just happens to be the temperature used to sterilize surgical instruments in an autoclave. Recent analyses of soil and ocean microbes indicate that many members of the Archaea are also at home in habitats of normal temperature, pH, and salinity.

All other prokaryotes are classified in the domain Bacteria. This domain includes the smallest known cells, the mycoplasma (0.2 μm diameter), which are the only known prokaryotes to lack a cell wall and to contain a genome with fewer than 500 genes. Bacteria are present in every conceivable habitat on Earth, from the permanent ice shelf of the Antarctic to the driest African deserts, to the internal confines of plants and animals. Bacteria have even been found living in rock layers situated several kilometers beneath the Earth’s surface. Some of these bacterial communities are thought to have been cut off from life on the surface for more than one hundred million years. The most complex prokaryotes are the cyanobacteria. Cyanobacteria contain elaborate arrays of cytoplasmic membranes, which serve as sites of photosynthesis (Figure 1.15a). The membranes of cyanobacteria are very similar to the photosynthetic membranes present within the chloroplasts of plant cells. As in eukaryotic plants, photosynthesis in cyanobacteria is accomplished by splitting water molecules, which releases molecular oxygen.

Many cyanobacteria are capable not only of photosynthesis, but also of nitrogen fixation, the conversion of nitrogen (N\(_2\)) gas into reduced forms of nitrogen (such as ammonia, NH\(_3\)) that can be used by cells in the synthesis of nitrogen-containing organic compounds, including amino acids and nucleotides. Those species capable of both photosynthesis and nitrogen fixation can survive on the barest of resources—light, N\(_2\), CO\(_2\), and H\(_2\)O. It is not surprising, therefore, that cyanobacteria are usually the first organisms to colonize the bare rocks rendered lifeless by a scouring volcanic eruption. Another unusual habitat occupied by cyanobacteria is illustrated in Figure 1.15b.

Prokaryotic Diversity For the most part, microbiologists are familiar only with those microorganisms they are able to grow in a culture medium. When a patient suffering from a respiratory or urinary tract infection sees his or her physician, one of the first steps often taken is to culture the pathogen. Once it has been cultured, the organism can be identified and the proper treatment prescribed. It has proven relatively easy to culture most disease-causing prokaryotes, but the same is not true for those living free in nature. The problem is compounded by the fact that prokaryotes are barely visible in a light microscope and their morphology is often not very distinctive. To date, roughly 6000 species of prokaryotes have

Figure 1.15 Cyanobacteria. (a) Electron micrograph of a cyanobacterium showing the cytoplasmic membranes that carry out photosynthesis. These concentric membranes are very similar to the thylakoid membranes present within the chloroplasts of plant cells, a reminder that chloroplasts evolved from a symbiotic cyanobacterium. (b) Cyanobacteria living inside the hairs of these polar bears are responsible for the unusual greenish color of their coats. (A: COURTESY OF NORMA J. LANG; B: COURTESY ZOOLOGICAL SOCIETY OF SAN DIEGO.)
been identified by traditional techniques, which is less than one-tenth of 1 percent of the millions of prokaryotic species thought to exist on Earth! Our appreciation for the diversity of prokaryotic communities has increased dramatically in recent years with the use of molecular techniques that do not require the isolation of a particular organism.

Suppose one wanted to learn about the diversity of prokaryotes that live in the upper layers of the Pacific Ocean off the coast of California. Rather than trying to culture such organisms, which would prove largely futile, a researcher could concentrate the cells from a sample of ocean water, extract the DNA, and analyze certain DNA sequences present in the preparation. All organisms share certain genes, such as those that code for the RNAs present in ribosomes or the enzymes of certain metabolic pathways. Even though all organisms may share such genes, the sequences of the nucleotides that make up the genes vary considerably from one species to another. This is the basis of biological evolution. By using techniques that reveal the variety of DNA sequences of a particular gene in a particular habitat, one learns directly about the diversity of species that live in that habitat. Recent sequencing techniques have become so rapid and cost-efficient that virtually all of the genes present in the microbes of a given habitat can be sequenced, generating a collective genome, or metagenome. This approach can provide information about the types of proteins these organisms manufacture and thus about many of the metabolic activities in which they engage.

These same molecular strategies are being used to explore the remarkable diversity among the trillions of “unseen passengers” that live on or within our own bodies, in habitats such as the intestinal tract, mouth, vagina, and skin. This collection of microbes, which is known as the human microbiome, is the subject of several international research efforts aimed at identifying and characterizing these organisms in people of different age, diet, geography, and state of health. It has already been demonstrated, for example, that obese and lean humans have markedly different populations of bacteria in their digestive tracts. As obese individuals lose weight, their bacterial profile shifts toward that of the leaner individuals. One recent study of fecal samples taken from 124 people of varying weight revealed the presence within the collective population of more than 1000 different species of bacteria. Taken together, these microbes contained more than 3 million distinct genes—approximately 150 times as many as the number present in the human genome. Among the functions of proteins encoded by these microbial genomes are the synthesis of vitamins, the breakdown of complex plant sugars, and the prevention of growth of pathogenic organisms.

By using sequence-based molecular techniques, biologists have found that most habitats on Earth are teeming with previously unrecognized prokaryotic life. One estimate of the sheer numbers of prokaryotes in the major habitats of the Earth is given in Table 1.2. It is noteworthy that more than 90 percent of these organisms are now thought to live in the subsurface sediments well beneath the oceans and upper soil layers. Nutrients can be so scarce in some of these deep sediments that microbes living there are thought to divide only once every several hundred years! Table 1.2 also provides an estimate of the amount of carbon that is sequestered in the world’s prokaryotic cells. To put this number into more familiar terms, it is roughly comparable to the total amount of carbon present in all of the world’s plant life.

Types of Eukaryotic Cells: Cell Specialization

In many regards, the most complex eukaryotic cells are not found inside of plants or animals, but rather among the single-celled (unicellular) protists, such as those pictured in Figure 1.16. All of the machinery required for the complex activities...
in which this organism engages—sensing the environment, trapping food, expelling excess fluid, evading predators—is housed within the confines of a single cell.

Complex unicellular organisms represent one evolutionary pathway. An alternate pathway has led to the evolution of multicellular organisms in which different activities are conducted by different types of specialized cells. Specialized cells are formed by a process called differentiation. A fertilized human egg, for example, will progress through a course of embryonic development that leads to the formation of approximately 250 distinct types of differentiated cells. Some cells become part of a particular digestive gland, others part of a large skeletal muscle, others part of a bone, and so forth (Figure 1.17). The pathway of differentiation followed by each embryonic cell depends primarily on the signals it receives from the surrounding environment; these signals in turn depend on the position of that cell within the embryo. As discussed in the accompanying Human Perspective, researchers are learning how to control the process of differentiation in the culture dish and applying this knowledge to the treatment of complex human diseases.

As a result of differentiation, different types of cells acquire a distinctive appearance and contain unique materials. Skeletal muscle cells contain a network of precisely aligned filaments composed of unique contractile proteins; cartilage cells become surrounded by a characteristic matrix containing polysaccharides and the protein collagen, which together provide mechanical support; red blood cells become disk-shaped sacks filled with a single protein, hemoglobin, which transports oxygen; and so forth. Despite their many differences, the various cells of a multicellular plant or animal are composed of similar organelles. Mitochondria, for example, are found in essentially all types of cells. In one type, however, they may have a rounded shape, whereas in another they may be highly elongated and thread-like. In each case, the number, appearance, and location of the various organelles can be

![Figure 1.17 Pathways of cell differentiation. A few of the types of differentiated cells present in a human fetus. (Micrographs Courtesy of Michael Ross, University of Florida.)](image)
correlated with the activities of the particular cell type. An analogy might be made to a variety of orchestral pieces: all are composed of the same notes, but varying arrangement gives each its unique character and beauty.

Model Organisms Living organisms are highly diverse, and the results obtained from a particular experimental analysis may depend on the particular organism being studied. As a result, cell and molecular biologists have focused considerable research activities on a small number of “representative” or model organisms. It is hoped that a comprehensive body of knowledge built on these studies will provide a framework to understand those basic processes that are shared by most organisms, especially humans. This is not to suggest that many other organisms are not widely used in the study of cell and molecular biology. Nevertheless, six model organisms—one prokaryote and five eukaryotes—have captured much of the attention: a bacterium, *E. coli*; a budding yeast, *Saccharomyces cerevisiae*; a flowering plant, *Arabidopsis thaliana*; a nematode, *Caenorhabditis elegans*; a fruit fly, *Drosophila melanogaster*; and a mouse, *Mus musculus*. Each of these organisms has specific advantages that make it particularly useful as a research subject for answering certain types of questions. Each of these organisms is pictured in Figure 1.18, and a few of their advantages as research systems are described in the accompanying legend. We will concentrate in this text on results obtained from studies on mammalian systems—mostly on the mouse and on cultured mammalian cells—because these findings are most applicable to humans. Even so, we will have many occasions to describe research carried out on the cells of other species. You may be surprised to discover how similar you are at the cell and molecular level to these much smaller and simpler organisms.

The Sizes of Cells and Their Components

Figure 1.19 shows the relative size of a number of structures of interest in cell biology. Two units of linear measure are most commonly used to describe structures within a cell: the micrometer (μm) and the nanometer (nm). One μm is equal to 10^{-6} meters, and one nm is equal to 10^{-9} meters. The angstrom (Å), which is equal to one-tenth of a nm, is commonly employed by molecular biologists for atomic dimensions. One angstrom is roughly equivalent to the diameter of a hydrogen atom. Large biological molecules (i.e., macromolecules) are described in either angstroms or nanometers. Myoglobin, a typical globular protein, is approximately 4.5 nm × 3.5 nm × 2.5 nm; highly elongated proteins (such as collagen or myosin) are over 100 nm in length; and DNA is approximately 2.0 nm in width. Complexes of macromolecules, such as ribosomes, microtubules, and microfilaments, are between 5 and 25 nm in diameter. Despite their tiny dimensions, these macromolecular complexes constitute remarkably sophisticated “nanomachines” capable of performing a diverse array of mechanical, chemical, and electrical activities.

Cells and their organelles are more easily defined in micrometers. Nuclei, for example, are approximately 5–10 μm in diameter, and mitochondria are approximately 2 μm in length. Prokaryotic cells typically range in length from about 1 to 5 μm, eukaryotic cells from about 10 to 30 μm. There are a number of reasons most cells are so small. Consider the following.

- Most eukaryotic cells possess a single nucleus that contains only two copies of most genes. Because genes serve as templates for the production of information-carrying messenger RNAs, a cell can only produce a limited number of these messenger RNAs in a given amount of time. The greater a cell's cytoplasmic volume, the longer it will take to synthesize the number of messages required by that cell.

- As a cell increases in size, the surface area/volume ratio decreases. The ability of a cell to exchange substances with its environment is proportional to its surface area. If a cell were to grow beyond a certain size, its surface would not be sufficient to take up the substances (e.g., oxygen, nutrients) needed to support its metabolic activities. Cells that are specialized for absorption of solutes, such as those of the intestinal epithelium, typically possess microvilli, which greatly increase the surface area available for exchange (see Figure 1.3). The interior of a large plant cell is typically filled by a large, fluid-filled vacuole rather than metabolically active cytoplasm (see Figure 8.36b).

- A cell depends to a large degree on the random movement of molecules (diffusion). Oxygen, for example, must diffuse from the cell’s surface through the cytoplasm to the interior of its mitochondria. The time required for diffusion is proportional to the square of the distance to be traversed. For example, O_2 requires only 100 microseconds to diffuse a distance of 1 μm, but requires 10^6 times as long to diffuse a distance of 1 mm. As a cell becomes larger and the distance from the surface to the interior becomes greater, the time required for diffusion to move substances in and out of a metabolically active cell becomes prohibitively long.

Synthetic Biology

A goal of one field of biological research, often referred to as synthetic biology, is to create some minimal type of living cell in the laboratory, essentially from “scratch,” as suggested by the cartoon in Figure 1.20. One motivation of these researchers is simply to accomplish the feat and, in the process, demonstrate that life at the cellular level emerges spontaneously when the proper constituents are brought together from chemically synthesized materials. At this point in time, biologists are nowhere near accomplishing this feat, and many members of society would argue that it would be unethical to do so. A more modest goal of synthetic biology is to develop novel life forms, using existing organisms as a starting point, that have a unique value in medicine and industry, or in cleaning up the environment.

3You can verify this statement by calculating the surface area and volume of a cube whose sides are 1 cm in length versus a cube whose sides are 10 cm in length. The surface area/volume ratio of the smaller cube is considerably greater than that of the larger cube.
If, as most biologists would argue, the properties and activities of a cell spring from the genetic blueprint of that cell, then it should be possible to create a new type of cell by introducing a new genetic blueprint into the cytoplasm of an existing cell. This feat was accomplished by J. Craig Venter and colleagues in 2007, when they replaced the genome of one bacterium with a genome isolated from a closely related species, effectively transforming one species into the other.
In 2010, after overcoming a number of stubborn technical roadblocks, the team was able to accomplish a similar feat using a copy of a bacterial genome that had been assembled (inside of a yeast cell) from fragments of DNA that had been chemically synthesized in the laboratory. The synthetic copy of the donor genome, which totaled approximately 1.1 million base pairs of DNA, contained a number of modifications introduced by the researchers. The modified copy of the genome (from *M. mycoides*) was transplanted into a cell of a closely related bacterial species (*M. capricolum*), where it replaced the host’s original genome. Following genome transplantation, the recipient cell rapidly took on the characteristics of the species from which the donor DNA has been derived. In effect, these researchers have produced cells containing a “genetic skeleton” to which they can add combinations of new genes taken from other organisms.

Researchers around the world are attempting to genetically engineer organisms to possess metabolic pathways capable of producing pharmaceuticals, hydrocarbon-based fuel molecules, and other useful chemicals from cheap, simple precursors. At least one company has claimed to be growing genetically engineered cyanobacteria capable of producing diesel fuel from sunlight, water, and CO$_2$. Researchers at another company have genetically engineered the common lab bacterium *E. coli* to ferment the complex polysaccharides present in seaweed into the biofuel ethanol. This feat required the introduction into *E. coli* of a combination of genes derived from three other bacterial species. Work has also begun on “rewriting” the yeast genome, signifying that eukaryotic cells have also become part of the effort to design genetically engineered biological manufacturing plants.

In principle, the work described in the Human Perspective, in which one type of cell is directed into the formation of an entirely different type of cell, is also a form of synthetic biology. As a result of these many efforts, biologists are no longer restricted to studying cells that are available in Nature, but can also turn their attention to cells that can become available through experimental manipulation.

REVIEW

1. Compare a prokaryotic and eukaryotic cell on the basis of structural, functional, and metabolic differences.
2. What is the importance of cell differentiation?
3. Why are cells almost always microscopic?
4. If a mitochondrion were 2 μm in length, how many angstroms would it be? How many nanometers? How many millimeters?
Chapter 1

Introduction to the Study of Cell and Molecular Biology

The Human Perspective

Many human diseases result from the deaths of specific types of cells. Type 1 diabetes, for example, results from the destruction of beta cells in the pancreas; Parkinson’s disease occurs with the loss of dopamine-producing neurons in the brain; and heart failure can be traced to the death of cardiac muscle cells (cardiomyocytes) in the heart. Imagine the possibilities if we could isolate cells from a patient, convert them into the cells that are needed by that patient, and then infuse them back into the patient to restore the body’s lost function. Recent studies have given researchers hope that one day this type of therapy will be commonplace. To better understand the concept of cell replacement therapy, we can consider a procedure used widely in current practice known as bone marrow transplantation in which cells are extracted from the pelvic bones of a donor and infused into the body of a recipient.

Bone marrow transplantation is used most often to treat lymphomas and leukemias, which are cancers that affect the nature and number of white blood cells. To carry out the procedure, the patient is exposed to a high level of radiation and/or toxic chemicals, which kills the cancer cells, but also kills all of the cells involved in the formation of red and white blood cells. This treatment has this effect because blood-forming cells are particularly sensitive to radiation and toxic chemicals. Once a person’s blood-forming cells have been destroyed, they are replaced by bone marrow cells transplanted from a healthy donor. Bone marrow can regenerate the blood tissue of the transplant recipient because it contains a small percentage of cells that can proliferate and restock the patient’s blood-forming bone marrow tissue. These blood-forming cells in the bone marrow are termed hematopoietic stem cells (or HSCs), and they were discovered in the early 1960s by Ernest McCulloch and James Till at the University of Toronto. HSCs are responsible for replacing the millions of red and white blood cells that age and die every minute in our bodies (see Figure 17.6). Amazingly, a single HSC is capable of reconstituting the entire hematopoietic (blood-forming) system of an irradiated mouse. An increasing number of parents are saving the blood from the umbilical cord of their newborn baby as a type of “stem-cell insurance policy” in case that child should ever develop a disease that might be treated by administration of HSCs. Now that we have described one type of cell replacement therapy, we can consider several other types that have a much wider therapeutic potential. We will divide these potential therapies into four types.

Adult Stem Cells

Hematopoietic stem cells in the bone marrow are an example of an adult stem cell. Stem cells are defined as undifferentiated cells that (1) are capable of self-renewal, that is, production of more cells like themselves, and (2) are multipotent, that is, are capable of differentiating into two or more mature cell types. HSCs of the bone marrow are only one type of adult stem cell. Most, if not all, of the organs in a human adult contain stem cells that are capable of replacing the particular cells of the tissue in which they are found. Even the adult brain, which is not known for its ability to regenerate, contains stem cells that can generate new neurons and glial cells (the supportive cells of the brain). Figure 1a shows an isolated stem cell present in adult skeletal muscle; 1

Bone marrow transplantation can be contrasted to a simple blood transfusion where the recipient receives differentiated blood cells (especially red blood cells and platelets) present in the circulation.

Figure 1 An adult muscle stem cell. (a) A portion of a muscle fiber, with its many nuclei stained blue. A single stem cell (yellow) is seen to be lodged between the outer surface of the muscle fiber and an extracellular layer (or basement membrane), which is stained red. The undifferentiated stem cell exhibits this yellow color because it expresses a protein that is not present in the differentiated muscle fiber. (b) Adult stem cells undergoing differentiation into adipose (fat) cells in culture. Stem cells capable of this process are present in adult fat tissue and also bone marrow. (A: FROM CHARLOTTE A. COLLINS; ET AL., CELL 122:291, 2005; BY PERMISSION OF ELSEVIER; B: COURTESY OF THERMO FISHER SCIENTIFIC, FROM NATURE 451:855, 2008.)

1Bone marrow transplantation can be contrasted to a simple blood transfusion where the recipient receives differentiated blood cells (especially red blood cells and platelets) present in the circulation.
Embryonic Stem Cells

Much of the excitement that has been generated in the field over the past decade or two has come from studies on embryonic stem (ES) cells, which are a type of stem cell isolated from very young mammalian embryos (Figure 2a). These are the cells in the early embryo that give rise to all of the various structures of the mammalian fetus. Unlike adult stem cells, ES cells are pluripotent, that is, they are capable of differentiating into every type of cell in the body. In most cases, human ES cells have been isolated from embryos provided by in vitro fertilization clinics. Worldwide, dozens of genetically distinct human ES cell lines, each derived from a single embryo, are available for experimental investigation.

The long-range goal of clinical researchers is to learn how to coax ES cells to differentiate in culture into each of the many cell types that might be used for cell replacement therapy. Considerable progress has been made in this pursuit, and numerous studies have shown that transplants of differentiated, ES-derived cells can improve the condition of animals with diseased or damaged organs. The first trials in humans were begun in 2009 on patients who had experienced debilitating spinal cord injuries or were suffering from an eye disease called Stargardt's macular dystrophy. The trials to treat spinal cord injuries utilize cells, called oligodendrocytes, that produce the myelin sheaths that become wrapped around nerve cells (see Figure 4.5). The oligodendrocytes used in these trials were differentiated from human ES cells that were cultured in a medium containing insulin, thyroid hormone, and a combination of certain growth factors. This particular culture protocol had been found to direct the differentiation of ES cells into oligodendrocytes rather than any other cell type. At the time of this writing, no significant improvement had been reported in any of the treated patients, and the company conducting the trial has decided to cease further involvement in the effort. The primary risk with the therapeutic use of ES cells is the unnoticed presence of undifferentiated ES cells among the differentiated cell population. Undifferentiated ES cells are capable of forming a type of benign tumor, called a teratoma, which may contain a bizarre mass of various differentiated tissues, including hair and teeth. The formation of a teratoma within the central nervous system could have severe consequences. In addition, the culture of ES cells at the present time involves the use of non-human biological materials, which also poses potential risks.

The ES cells used in these early trials were derived from cell lines that had been isolated from human embryos unrelated to the patients who are being treated. Such cells face the prospect of immunologic rejection by the transplant recipient. It may be possible, however, to “customize” ES cells so that they possess the same genetic makeup of the individual who is being treated. This may be accomplished one day by a roundabout procedure called somatic cell nuclear transfer (SCNT), shown in Figure 2b, that begins with an unfertilized egg—a cell that is obtained from the ovaries of an unrelated woman donor. In this approach, the nucleus of the unfertilized egg would be replaced by the nucleus of a cell from the patient to be treated, which would cause the egg to have the same chromosome composition as that of the patient. The egg would then be allowed to develop to an early embryonic stage, and the ES cells would be removed, cultured, and induced to differentiate into the type of cells needed by the patient. Because this procedure involves the formation of a human embryo that is used only as a source of ES cells, there are major ethical questions that must be settled before it could be routinely practiced. In addition, the process of SCNT is so expensive and technically demanding that it is highly improbable that it could ever be practiced as part of any routine medical treatment. It is more...
Induced Pluripotent Stem Cells

It had long been thought that the process of cell differentiation in mammals was irreversible; once a cell had become a fibroblast, or white blood cell, or cartilage cell, it could never again revert to any other cell type. This concept was shattered in 2006 when Shinya Yamanaka and co-workers of Kyoto University announced a stunning discovery; his lab had succeeded in reprogramming a fully differentiated mouse cell—in this case a type of connective tissue fibroblast—into a pluripotent stem cell. They accomplished the feat by introducing, into the mouse fibroblast, the genes that encoded four key proteins that are characteristic of ES cells. These genes (Oct4, Sox2, Klf4, and Myc, known collectively as OSMK) are thought to play a key role in maintaining the cells in an undifferentiated state and allowing them to continue to self-renew. The genes were introduced into cultured fibroblasts using gene-carrying viruses, and those rare cells that became reprogrammed were selected from the others in the culture by specialized techniques. They called this new type of cells induced pluripotent cells (iPS cells) and demonstrated that they were indeed pluripotent by injecting them into a mouse blastocyst and finding that they participated in the differentiation of all the cells of the body, including eggs and sperm. Within the next year or so the same reprogramming feat had been accomplished in several labs with human cells. What this means is that researchers now have available to them an unlimited supply of pluripotent cells that can be directed to differentiate into various types of body cells using similar experimental protocols to those already developed for ES cells.

Indeed, iPS cells have already been used to correct certain disease conditions in experimental animals, including sickle cell anemia in mice as depicted in Figure 3. iPS cells have also been prepared from adult cells taken from patients with a multitude of genetic disorders. Researchers are then able to follow the differentiation of these iPS cells in culture into the specialized cell types that are affected by the particular disease. An example of this type of experiment is portrayed on the front cover of this book. It is hoped that such studies will reveal the mechanisms of disease formation as it unfolds in a culture dish just as it would normally occur in an unobserv-}

Figure 3 Steps taken to generate induced pluripotent stem (iPS) cells for use in correcting the inherited disease sickle cell anemia in mice. Skin cells are collected from the diseased animal, reprogrammed in culture by introducing the four required genes that are ferried into the cells by viruses, and allowed to develop into undifferentiated pluripotent iPS cells. The iPS cells are then treated so as to replace the defective (globin) gene with a normal copy, and the corrected iPS cells are caused to differentiate into normal blood stem cells in culture. These blood stem cells are then injected back into the diseased mouse, where they proliferate and differentiate into normal blood cells, thereby curing the disorder. (Reprinted from an Illustration by Rudolf Jaenisch, Cell 132:5, 2008, with permission from Elsevier.)
human subjects. Also like ES cells, the iPS cells in current use have the same tissue antigens as the donors who originally provided them, so they would stimulate an immune attack if they were to be transplanted into other human recipients. Unlike the formation of ES cells, however, it will be much easier to generate personalized, tissue-compatible iPS cells, because they can be derived from a simple skin biopsy from each patient. Still, it does take considerable time, expense, and technical expertise to generate a population of iPS cells from a specific donor. Consequently, if iPS cells are ever developed for widespread therapeutic use, they would likely come from a large cell bank that could provide cells that are close tissue matches to most potential recipients. It may also be possible to remove all of the genes from iPS cells that normally prevent them from being transplanted into random recipients.

Direct Cell Reprogramming

In 2008 the field of cellular reprogramming took another unexpected turn with the announcement that one type of differentiated cell had been converted directly into another type of differentiated cell, a case of “transdifferentiation.” In this report, the acinar cells of the pancreas, which produce enzymes responsible for digestion of food in the intestine, were transformed into pancreatic beta cells, which synthesize and secrete the hormone insulin. The reprogramming process occurred directly, in a matter of a few days, without the cells passing through an intermediate stem cell state—and it occurred while the cells remained in their normal residence within the pancreas of a live mouse. This feat was accomplished by injection into the animals of viruses that carried three genes known to be important in differentiation of beta cells in the embryo. In this case, the recipients of the injection were diabetic mice, and the transdifferentiation of a significant number of acinar cells into beta cells allowed the animals to regulate their blood sugar levels with much lower doses of insulin. It is also noteworthy that the adeno viruses used to deliver the genes in this experiment do not become a permanent part of the recipient cell, which removes some of the concerns about the use of viruses as gene carriers in humans. Since this initial report, a number of laboratories have developed in vitro techniques to directly convert one type of differentiated cell (typically a fibroblast) into another type of cell, such as a neuron, cardiomyocyte, or blood-cell precursor, in culture, without passing through a pluripotent intermediate. In all of these cases, transdifferentiation occurs when the original cells are forced to express certain genes that play a role in the normal embryonic differentiation of the other cell type. It is too early to know whether this type of direct reprogramming strategy has therapeutic potential, but it certainly raises the prospect that diseased cells that need to be replaced might be formed directly from other types of cells within the same organ.

1.4 Viruses

By the end of the nineteenth century, the work of Louis Pasteur and others had convinced the scientific world that infectious diseases of plants and animals were due to bacteria. But studies of tobacco mosaic disease in tobacco plants and hoof-and-mouth disease in cattle pointed to the existence of another type of infectious agent. It was found, for example, that sap from a diseased tobacco plant could transmit mosaic disease to a healthy plant, even when the sap showed no evidence of bacteria in the light microscope. To gain further insight into the size and nature of the infectious agent, Dmitri Ivanovsky, a Russian biologist, forced the sap from a diseased plant through filters whose pores were so small that they retarded the passage of the smallest known bacterium. The filtrate was still infective, causing Ivanovsky to conclude in 1892 that certain diseases were caused by pathogens that were even smaller, and presumably simpler, than the smallest known bacteria. These pathogens became known as **viruses**.

In 1935, Wendell Stanley of the Rockefeller Institute reported that the virus responsible for tobacco mosaic disease could be crystallized and that the crystals were infective. Substances that form crystals have a highly ordered, well-defined structure and are vastly less complex than the simplest cells. Stanley mistakenly concluded that tobacco mosaic virus (TMV) was a protein. In fact, TMV is a rod-shaped particle consisting of a single molecule of RNA surrounded by a helical shell composed of protein subunits (Figure 1.21).

![Figure 1.21 Tobacco mosaic virus (TMV). (a) Model of a portion of a TMV particle. The protein subunits, which are identical along the entire rod-shaped particle, enclose a single helical RNA molecule (red). (b) Electron micrograph of TMV particles after phenol has removed the protein subunits from the middle part of the upper particle and the ends of the lower particle. Intact rods are approximately 300 nm long and 18 nm in diameter. (A&B: COURTESY OF GERALD STUBBS, KEUCHI NAMBA, AND DONALD CASPAR.)](image-url)