

Fibers made of polymerized protein

Cell Shape and Transportation:

(Cells, Figure 7.14)

Organization of the Cell

Organelles are not passive blobs?

(b) Eukaryotic cell

© John Wiley & Sons, Inc. All rights reserved.

(Figure 9.2)

A snapshot

Can we stop it?

Drugs can be used to study the functions of Microtubules

(13) protofilaments align to form a hollow tube

What is the structure? Microtubules are polymers How can we see this?

Self-assembly into polymer/microtubule

Transportation and Polarity:

Experiment to tell you where the MTOC is?

Microtubule Assembly

(13) protofilaments align to form a hollow tube = microtubule lateral bonds give tubule strength

(i)

0.3 µm

Copyright ○ John Wiley & Sons, Inc. All rights reserved.

Microtubule Assembly

(13) protofilaments align to form a hollow tube = microtubule lateral bonds give tubule strength

Where are subunits added?

Figure 9.26

Injected with biotin-Tubulin (1 minute)

<u>FRAP</u>

FRAP:

Can tell you about the dynamics of molecules in the polymer

We can watch MT dynamics

Injected with rhod-Tubulin

Dynamic Instability (Speckles)

Inject with GFP-Tubulin

GTP hydrolysis changes conformation and stability of MTs

(+) end cap regulates stability of MT

GTP-bound structure is different than GDP-bound

Stability of microtubules

From website: flipper e nuvola

From website: flipper e nuvola

Stability of microtubules

1) GTP vs GDP bound cap

2) Microtubule associated proteins (MAPs)

From Anna Akhmanova and Michel O. Steinmetz, J. Cell Science 123, 3415, 2010; by permission of the Company of Biologists. Courtesy Anna Akhmanova and Ilya Grigoriev, Utrecht University, The Netherlands. http://jcs.biologists.org/content/123/20/3415.full?sid=f97c0f52-c919-4739-a062-0d83b8e8f68b

How do (+) TIPs stabilize the (+) tip?

XMAP215 CLIP170 (function)

Clip170

Role of the Cytoskeleton and Motor Proteins in Membrane Trafficking

Transportation and Polarity:

(Cells, Figure 7.14)

0.25 µm

Which direction do mitochondria travel on microtubules?

Pilling and Saxton, MBOC 2006

Microtubule motor proteins

MOSTLY Plus-end directed motors----- kinesins

Minus-end directed motors----dyneins

Motors "walk" along MTs towards the plus or minus end

What can measure from this movie?

+ End of Microtubule

Watching Kinesin-1 move -speed, processive

Figure 9.6

Motors "walk" along MTs towards the plus or minus end

kinesins:

-MT (+) end -motor domain at N-terminus -ATP-dependent

dyneins:

-MT (-) end -motor domain at C-terminus -cytoplasmic form (homodimer) -ATP-dependent

Ron Vale and colleagues

Copyright © John Wiley & Sons, Inc. All rights reserved.

Figure 9.66

Picture of Neuron labelled for actin and its shape

General principle 2: Large structural changes occur with microtubules, small changes are with actin filaments

Role of the Cytoskeleton and Motor Proteins in Membrane Trafficking

Actin filaments building block = actin

Functions: structural support, contraction, migration

Rate and direction of growth depends on free actin concentration

Actin polymerization

Proteins that regulate actin polymerization

Therefore, the direction of growth is regulated

Proteins that depolymerize actin filaments

Small G protein activation regulates actin organization

© John Wiley & Sons, Inc. All rights reserved.

Directed cell motility

© John Wiley & Sons, Inc. All rights reserved.

Figure 9.71

Myosin: variety of tail domains

Structure of myosin proteins

Binds tightly in the absence of ATP ATP hydrolysis - power stroke - lever arm

Regulation of myosin by phosphorylation

Rab proteins on vesicles are linked to cytoskeleton Also regulated by GTP-Rab state

From Matthew L. Walker et al., courtesy of Peter J. Knight. Reprinted with permission from *Nature* 405:804, 2000; © Copyright 2000; Macmillan Magazines Ltd.

Myosin: variety of tail domains

Copyright © John Wiley & Sons, Inc. All rights reserved.

Bipolar filament

Copyright © John Wiley & Sons, Inc. All rights reserved.

Courtesy Hugh Huxley

Copyright © John Wiley & Sons, Inc. All rights reserved.

Myosin: variety of tail domains

© John Wiley & Sons, Inc. All rights reserved.

From Matthew L. Walker et al., courtesy of Peter J. Knight. Reprinted with permission from *Nature* 405:804, 2000; © Copyright 2000; Macmillan Magazines Ltd.

Myosin: variety of tail domains

Regulation of myosin by phosphorylation

The Cytoskeleton: Intermediate Filaments

Reprinted with permission from H. Herrmann et al., Noture Revs. Mal. Cell Biol. 8:564, 2007; © Copyright 2007, Macmillan Magazines Ltd. 93

Courtery of Tatyana Svitkina and Gary Boriny

IF protein	Sequence type	Primary tissue distribution
Keratin (acidic)	1	Epithelia
(28 different polypept)	des)	P-145-17
(26 different polypepti	des)	Epithelia
Vimentin		Mesenchymal cells
Desmin		Muscle
Glial fibrillary acidic protein (GFAP)	ш	Astrocytes
Peripherin	111	Peripheral neurons
Neurofilament proteins		Neurons of central
NF-L	IV	and peripheral
NF-M	IV	nerves
NF-H	IV	
Nestin	IV	Neuroepithelial
Lamin proteins		All cell types
Lamin A	v	(Nuclear envelopes)
Lamin B	v	
Lamin C	v	

TABLE 9.2 Properties and Distribution of the Major Mammalian Intermediate Filament Proteins

More detailed tables can be found in Trends Biochem Sci. 31:384, 2006, Genes and Development 21:1582, 2007, and Trends Cell Biol. 18:29, 2008.

95

© John Wiley & Sons, Inc. All rights reserved.

Copyright © John Wiley & Sons, Inc. All rights reserved.

© John Wiley & Sono, Inc. All rights reserved.

98

99

From Pierre A. Coulombe and M. Bishr Omary, Curr. Opin. Cell Biol. 14:110, 2002

(a)

(b)

From Rite K. Miller, Karen Vikstrom, and Robert D. Goldman. J. Cell Biol. 113:548. 1991: by copyright permission of The Rockafeller University Press.

The Cytoskeleton: Intermediate Filaments

Reprinted with permission from H. Hermann et al., Noture Revs. Mol. Cell Biol. 8:364, 2007) © Copyright 2007, Macmillan Magazines Ltd 101

epidermolysis bullosa simplex

Keratins form Intermediate Filaments that organize tissues

Places where you'll find epithelial cells

Intermediate filaments

building block = variable

(keratin, vimentin, nuclear lamins, others)

Functions: mechanical integrity of tissue, cell, or subcellular organelle

Laminopathies (HGPS, progeria)

Some IFs are found in all cells.

Nuclear lamins, a special type of IF, form a basket underlying the nuclear membrane, giving it strength and organization.


```
3 µm
```


Copyright © John Wiley & Sons, Inc. All rights reserved.

From Werner W. Franke, et al., J. Cell Biol. 91:47s, Figure 8, 1981. Reproduced with permission of Rockefeller University Press.

Cell Cycle NE/Lamin Changes

Phosphorylation of Tyrosine Residues

