How do you isolate and propagate a piece of DNA (for example a gene)?

Vector (= plasmid or viral DNA that can replicate in a desired organism - often *E. coli*)

Restriction enzymes cleave DNA at specific (usually palindromic) sequences

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

*Only one DNA strand, written $5' \rightarrow 3'$ left to right is presented, but restriction endonucleases actually cut double-stranded DNA as illustrated in the text for *Eco*RI. The cutting site for each enzyme is represented by an arrow.

Table 4.1

Many bacteria contain restriction-modification systems to "restrict" invasion by foreign DNA

Bacterial genome DNA

Invading DNA (e.g. virus)

Based on Fig. 4.1

Ligating a DNA fragment to a vector

Fig. 4.7

Obtaining bacterial clones with your recombinant plasmid

Pick a colony you have your clone!

Bacterial colonies containing your plasmid (only plasmid-containing bacteria will survive on tetracycline)

- Clicker Question -

Bacteriophages can be used instead of plasmids as cloning vectors (can take larger inserts)

How do you know your bacterial clone contains your plasmid (and not e.g. self-ligated plasmid)?

- Clicker Question -

How do you know your bacterial clone contains your plasmid ?

Sanger dideoxy DNA sequencing

Fig. 5.20

How do dideoxynucleotides terminate DNA polymerization?

Latest technology: Deep sequencing

Pyrosequencing

Deep sequencing

Diphosphate (pyrophosphate) release is measured

dNTPs added one at a time - only correct dNTP causes release of pyrophosphate Currently sequences $\approx 500 \text{ million}$ base pairs in 10 hours

How do you obtain your insert DNA (e.g. a gene)?

The polymerase chain reaction (PCR) for amplifying

Fig. 4.15

Cycles 3,4 etc...

Final product

<u>Max yield</u>: [start conc] * $2^{\#cycles}$ e.g: 30 cycles starting with one molecule of DNA => 1 * 2^{30} molecules $\approx 10^{9}$ (one billion).

Cycle 2 products

How many cycles of PCR would (minimally) be required to amplify a piece of DNA one million times?

Using reverse transcriptase (RT)-PCR for amplifying a specific copy DNA (cDNA)

- Clicker Question -

Creating a genomic library

Creating a cDNA library

Copyright @ The McGraw-Hill companies, Inc. Permission required for reproduction or display.

Fig. 4.12

Finding the colony that contains a plasmid with your gene of interest in a library

- Clicker Question -

Expression of recombinant protein in bacteria

Fig. 4.18

How do you know your protein is expressed?

How do you purify your protein? The use of purification tags

Fusion protein:

His₆ Protein of interest

His₆: Six histidines purification tag (has high affinity for Ni²⁺)

Many other tags can be used, e.g. GST, MBP, Protein A etc....

Using affinity chromatography to purify your protein (e.g. His₆ tag and Ni²⁺ column)

Modified Fig. 4.20 (see also Chapter 5, pp. 88-90)

The usage of inducible promoters (e.g. arabinose-regulated)

- Clicker Question -

Commonly used procedure to create point mutations

How would you make a plasmid for bacterial expression of an *E. coli* protein in fusion with His₆?

How would you make a plasmid for bacterial expression of a human protein in fusion with His₆?

Vectors exist for gene expression in eukaryotic cells

Fig. 4.23

- Clicker Question -