[Reprinted from THE JOURNAL OF EXPERIMENTAL MEDICINE, February 1, 1944, Vol. 79, No. 2, pp. 137-158]

STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES

INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III

BY OSWALD T. AVERY, M.D., COLIN M. MACLEOD, M.D., AND MACLYN McCARTY,* M.D.

Colin M. MacLeod

Oswald T. Avery

Maclyn McCarty

1880s: Walther Flemming Describes Chromosomes

1902: Boveri–Sutton Chromosome Theory

Boveri

Correct number of chromosomes must be present for normal embryonic development

Sutton

Matched pairs of paternal and maternal chromosomes separate during meiosis

"May constitute the physical basis of the Mendelian law of heredity".

1910s: Thomas Hunt Morgan Experimentally Proves Chromosome Theory

1928: Frederick Griffith discovers transformation

R variant R36A Pneumococcus Type II R variant R36A After addition of "transforming principle" Pneumococcus Type III S

Transformed R variants gain:

Polysaccharide capsule Type specificity Ability to produce infection

R variant R36A Pneumococcus **Type II** R variant R36A After addition of "transforming principle" Pneumococcus **Type III** S

Spontaneous transformation of R variants back to S variants of same type had been observed, but never transformation to different **type**

"The crude extract (type III) is full of capsular polysaccharide," Avery wrote to his brother Roy in 1943, " C (somatic) carbohydrate, nucleoproteins, free nucleic acids of both the yeast [RNA] and thymus [DNA] types, lipids and other cell constituents.

Try to find in that complex mixture the active principle.. Try to isolate and chemically identify the particular [transforming] substance....

Some job--full of heartaches and heartbreaks. But at last perhaps we have it...."

Clues on Transforming Principle Identity

- Store in salt solution @ 2-4°C for 3 months
- Rapidly loses activity in water
- Inactivated at pH 5 or below
- Dische diphenylamine reaction positive

TABLE I

Elementary Chemical Analysis of Purified Preparations of the Transforming Substance

Preparation No.	Carbon	Hydrogen	Nitrogen	Phosphorus	N/P ratio
	per cent	per cent	per cent	per cent	
37	34.27	3.89	14.21	8.57	1.66
38B	_	-	15.93	9.09	1.75
42	35.50	3.76	15.36	9.04	1.69
44		-	13.40	8.45	1.58
Theory for sodium desoxyribonucleate	34.20	3.21	15.32	9.05	1.69

Combinations that retain transforming principle

Trypsin and chymotrypsin digestion

TABLE II

The Inactivation of Transforming Principle by Crude Enzyme Preparations

	Enzymatic activity							
Crude enzyme preparations	Phosphatase	Tributyrin esterase	Depolymer- ase for desoxyribo- nucleate	Inactivation of trans- forming principle				
Dog intestinal mucosa	+	+	+	+				
Rabbit bone phosphatase	+	+		-				
Swine kidney "	+	_	-	-				
Pneumococcus autolysates	-	+	+	+				
Normal dog and rabbit serum	+	+	+	+				

TABLE III

Differential Heat Inactivation of Enzymes in Dog and Rabbit Serum Which Destroy the Transforming Substance

					Tripli	cate tests			Same conditions
	Heat treatment	Dilution*		1		2		3	deactivate
	of serum	2.10101	Diffuse growth	Colony form	Diffuse growth	Colony form	Diffuse growth	Colony form	transforming principle
	Unheated	Undiluted 1:5 1:25	-	R only R " R "	-	R only R " R "		Ronly R" R"	and depolymerase
Dog serum	60°C. for 30 min.	Undiluted 1:5 1:25	+ + + + + + + + + + + + + + + + + + + +	SIII SIII SIII	+ + +	SIII SIII SIII	+ + +	SIII SIII SIII	Differential Heat Inactivation of Desoxyribonucleodepolymerase of Dog and Rabbit Scrum
	65°C. for 30 min.	Undiluted 1:5 1:25	++++++	SIII SIII SIII	++++++	SIII SIII SIII	++++	SIII SIII SIII	Dog serum 3 Heated 60° for 30' Heated 65° for 30'
	Unheated	Undiluted 1:5 1:25		R only R" R"		R only R " R "		R only R " R "	Unheated
Rabbit serum	60°C. for 30 min.	Undiluted 1:5 1:25	- - -	Ronly R" R"	- - -	Ronly R" R"	- -	Ronly R" R"	Rabbit serum Heated 65° for 30' Heated 60° for 30'
	65°C. for 30 min.	Undiluted 1:5 1:25	+++++++++++++++++++++++++++++++++++++++	SIII SIII SIII	+++++	SIII SIII SIII	+++++++++++++++++++++++++++++++++++++++	SIII SIII SIII	Unheated Hrs. 5 10 15 20 25
Control (no serum)	None	Undiluted 1:5 1:25	+ + +	SIII SIII SIII	+ + +	SIII SIII SIII	+ + +	SIII SIII SIII	Time CHART 1

* Dilution of the digest mixture of serum and transforming substance.

TABLE IV

Titration of Transforming Activity of Preparation 44

Transformin	g principle	Quadruplicate tests									
Preparation 44*		1			2		3	4			
Dilution	Amount added	Diffuse growth	Colony form	Diffuse growth	Colony form	Diffuse growtb	Colony form	Diffuse growtb	Colony form		
	μg.										
10-2	1.0	+	SIII	4	SIII	+	SIII	+	SIII		
10-2.5	0.3	+	SIII	+	SIII	+	SIII	+	SIII		
10-3	0.1	+	SIII	+	SIII	+	SIII) +	SIII		
10 ^{-3.5}	0.03	+	SIII	+	SIII	+	SIII	+	SIII		
10-4	0.01	+	SIII	+	SIII	+	SIII	+	SIII		
10-4.5	0.003	-	R only	+	SIII	-	R only	+	SIII		
10-5	0.001	-	R "	-	R only	-	R"	-	R only		
Control	None	-	R"	-	R "	-	R"	-	R "		

* Solution from which dilutions were made contained 0.5 mg. per cc. of purified material. 0.2 cc. of each dilution added to quadruplicate tubes containing 2.0 cc. of standard serum broth. 0.05 cc. of a 10^{-4} dilution of a blood broth culture of R36A is added to each tube.

1952: Hershey-Chase Experiment

CAddison Wesley Longman, Inc.

MUTATIONS OF BACTERIA FROM VIRUS SENSITIVITY TO VIRUS RESISTANCE^{1,2}

S. E. LURIA³ AND M. DELBRÜCK

Indiana University, Bloomington, Indiana, and Vanderbilt University, Nashville, Tennessee

Received May 29, 1943

Salvador Luria

Max Delbrück

Theories on resistance

 D'Herelle (1926) – Virus induced resistant variants by direct action

 Gratia (1921) & Burnet (1929) – Resistant variants produced by mutation in culture prior to virus addition

A. Hypothesis of mutation to immunity

- Mutation occurs independent of phage
- Never interacts with phage

A. Hypothesis of mutation to immunity

- Mutation occurs independent of phage
- Never interacts with phage

B1. Hypothesis of acquired immunity of hereditarily predisposed individuals

- Mutation occurs independent of phage
- Interact w/ phage but survive

A. Hypothesis of mutation to immunity

- Mutation occurs independent of phage
- Never interacts with phage
- B1. Hypothesis of acquired immunity of hereditarily predisposed individuals

- Mutation occurs independent of phage
- Interact w/ phage but survive

B2. Hypothesis of acquired immunity – hereditary after infection

- Predisposed to survive due to random physiological variation
- Interact w/ phage but survive
- Offspring hereditarily immune

1. First Hypothesis (mutation)

Finite Probability to mutate from "sensitive" to "resistant"

All offspring will be resistant

Survivors will be clones of resistant bacteria of various sizes

% resistant increases over time – new mutations appear

Finite Probability for any to survive viral attack

Survival confers immunity & offspring will be resistant

Survivors will be random

% resistant should be static

All offspring resistant

Mutation hypothesis

Distribution of resistant bacteria has long tail of high numbers of resistant bacteria

Predicts variance larger than average

All offspring resistant

Acquired hypothesis

Random, so described by Poisson's law

Predicts variance equal to average

Table	I	
-------	---	--

The number of resistant bacteria in different samples from the same culture.

SAMPLE NO.	EXP. NO. 10a RÉSISTANT COLONIES	EXP. NO. 112 RESISTANT COLONIES	EXP. NO. 3 RESISTANT COLONIES
I ·	14	46	4
2	15	56	2
3	13	52	2
4	21	48	I
5	15	65	5
6	14	44	2
7	26	49	4
8	16	51	2
9	20	56	4
10	13	47	7
mean	16.7	51.4	3.3
variance	15	27	3.8
x ²	9	5.3	12
Р	.4	.8	. 2

EXPERIMENT NO.	I	10	11	15	16	17	21 a	21b	
Number of cultures Volume of cultures, cc Volume of samples, cc	9 10.0	8 10.0 .05	10 10.0 .05	10 10.0	20 .2* .08	12 . 2* . 08	19 . 2 .05	5 10.0 .05	
<u> </u>									
Culture No.	10	20	20	6		Ŧ	0	28	
2	18	41	10	Ę		•	0	28	
3	125	17	40	10	3	0	0	35	
4	10	20	45	8	o	7	0	107	
5	14	31	183	24	0	0	8	13	
6	27	30	12	13	5	303	I		
7	3	7	173	165	0	0	0		
8	17	17	23	15	5	0	I	-	
9	17		57	6	0	3	0	Exp	perimental values
IO			51	10	6	48	15	lar	ger than
II					107	I	0	iai	
12					0	4	0	cal	culated
13					0		19		
14					0		0	b/0	c mutations can
15					I		•	000	sur boforo timo 0
16					0		17		
17					0		II		
18					04		0		
19 20					35		0		
Average per sample	26.8	23.8	62	26.2	11.35	30	3.8	48.2	
variance (corrected for		۰.	a. 10 ⁹	27.78	60.1	6600	10.8		
Average per culture	5260	4760	3490	2170	28 4	. 75	40.0	8440	
Bacteria per culture	2 4 × 1010	4/00	4 X TO 10	2.0 X to 10	5.6X108	73 5 X108	1.1X108	3.2×10 ¹⁰	
Mutation rate	1.8X10-8	1.4X10-8	4.1X10-8	2.1 X 10 ⁻⁸	1.1 X 10 ⁻⁸	3.0X10-8	3.3X10-8	3.0 X10-8	
Standard deviation (exp.	I.3	. 30	.05	1.8	2.3	2.7	1.7	.71	
Average (calc.	-35	-33	• 33	.37	-94	.67	1.04	. 26	

 TABLE 2

 The number of resistant bacteria in series of similar cultures.

* Cultures in synthetic medium.

$$m = a(N_t - N_0)$$
 m = # of mutations
a = mutation rate

TABLE 4

Values of mutation rate from different experiments.

EXPERIMENT NO.	NUMBER OF CULTURES	VOLUME OF CULTURES	MUTATION RATE	
			Mutations per bacterium	
		cc	per time unit	
I	9	10.0	1.8×10-8	
10	8	10.0	1.4×10-8	
11	10	10.0	4.1×10 ⁻⁸	
15	10	10.0	2.1×10-8	
16	20	. 2*	1.1×10-8	
17	12	. 2*	3.0×10 ⁻⁸	
21a	19	. 2	3.3×10-8	
21b	5	10.0	3.0×10 ⁻⁸	
22	100	. 2*	2.3×10 ⁻⁸	
23	87	. 2*	2.4×10 ⁻⁸	
Average			2.45×10-8	

* Cultures in synthetic medium.