

Last Tuesday...

Nirenberg and Matthaei: RNA is the template for protein synthesis (poly-U —> phenylalanine)

CHARACTERISTICS AND COMPOSITION OF RNA CODING UNITS*

By J. HEINRICH MATTHAEI,[†] OLIVER W. JONES, ROBERT G. MARTIN, AND MARSHALL W. NIRENBERG

NATIONAL INSTITUTE OF ARTHRITIS AND METABOLIC DISEASES, BETHESDA

Communicated by Richard Roberts, February 27, 1962

Francis Crick

Sydney Brenner

- 1927 today
- Born in South Africa
- BS in Anatomy and Physiology
- MS in Cytogenetics
- PhD in Physical Chemistry from Oxford
- Joined Salk Institute in 1976
- Established C. elegans as model organism for developmental biology
- 2002 Nobel Prize Physiology or Medicine

Leslie Barnett

- 1920 2002
- Born in London
- BS in Dairying
- Worked with Brenner for most part of her life

Leslie Barnett, Francis Crick and Sydney Brenner at the MRC Laboratory, Cambridge in 1986. Original photograph held by Cold Spring Harbor Laboratories. Library reference no. SB/8/3/23.

NO. 4809 December 30, 1961 NATURE

GENERAL NATURE OF THE GENETIC CODE FOR PROTEINS By DR F. H. C CRICK, F.R.S. LESLIE BARNETT, DR. S. BRENNER and DR. R. J. WATTS-TOBIN

Medical Research Council Unit for Molecular Biology, Cavendish Laboratory, Cambridge

Bacteriophage T4

Figure from Brock Biology of Microorganisms

Escherichia coli

Why Phage T4?

- Plaques are an easy screening system
- Allows investigation of rare events (trillions of tries in a single LB plate)
- rll locus: phenotypes allows genetic mapping (Benzer)

Why Phage T4?

The Genetic Code is not overlapping

Evidence comes from previous studies:

- Tobacco mosaic virus RNA: mutations in RNA change only 1 amino acid (Tsugita et. al)
- Abnormal human hemoglobins shows only single amino acid changes (Watson et. al)

The Genetic Code is not overlapping

- How to find the code (reading frame) in a non-overlapping arrangement?
 - 1) The comma hypothesis

CODE,CODE,CODE,CODE,CODE,CODE

2) The comma-free hypothesis

CODE CODE CODE CODE CODE CODE CODE ODEC ODEC ODEC ODEC ODEC ODEC ODEC DECO DECO DECO DECO DECO DECO DECO

3) The fixed start hypothesis

CODE CODE CODE CODE CODE CODE

Experimental System

• FC0 mutant in the in the B1 segment of the "B cistron"

- Non-leaky (null) mutant
- No growth in K
- Growth (r-plaques) in B

FC0 mutant was produced by proflavin treatment

- Adds or deletes a base
- Generates mostly non-leaky mutants

Suppressors of FC0

- Second mutation (supressor) restores wild-type phenotype
- Suppressor mutations by themselves are "non-leaky r" (null) mutants

Suppressors of suppressors

Suppressors of suppressors of suppressors

rll mutations

Collection of ~ 80 mutants

- All mutants are non-leaky r (null)
- All mutants (except FC0) were occurred spontaneously
- Non-spontaneous (proflavin) mutations are similar to spontaneous mutations (line **h**)

- + and +: r phenotype
- and -: r phenotype

	Table 1. DOUBLE MUTANTS HAVING THE r PHENOTYPE- With -FC (1 + 21)FC (1 + 21)FC (23 + 21)FC (1 + 23)FC (1 + 23)FC (1 + 23)FC (1 + 9)FC (0 + 55)FC (1 + 9)FC (0 + 54)FC (40 + 54)FC (40 + 38)					
					Mutation	Phenotype
wт	ABC AB	C A B C	ABC ABC	ABC ABC ABC	None	WT
+ AND +	ABCAA	всав	BCABCA	BCA BCA BCA	+ and +	null
- AND -	ABC AB	CABC	BCA BCA	CAB CAB CAB	- and -	null

• + and -: Will all combinations be WT?

"Unacceptable codons might exits":

- nonsense
- end-of-chain
- complications in protein structure

Forward shifts are more acceptable is this region

Reverse shifts may generate "unacceptable" triplets (stop codon) — "Unacceptable region"

Generating triple mutants

Table 3. TRIPLE MUTANTS HAVING A WILD OR PSEUDO-WILD PHENO-TYPE

> FC (0 + 40 + 38) FC (0 + 40 + 58) FC (0 + 40 + 57) FC (0 + 40 + 54) FC (0 + 40 + 55)FC (1 + 21 + 23)

		Mutation	Phenotype
WT	ABC ABC ABC ABC ABC ABC ABC ABC	None	WT
+ AND +	ABCABCABCABCABCABCABCA	+ and +	null
+ AND + AND +	ABCABCABCABCABCABC ABC ABC	+ and + and +	WT

Genetic code is a triplet (or less likely a multiple of 3)

The start site hypothesis

Is the code degenerate?

- 4 common base pairs organized in triplets = 4^3 combinations = 64 triplets
- 20 common amino acids
- If the genetic code is not degenerate: there is 44 nonsense amino acids

Is the code degenerate?

- 4 common base pairs organized in triplets = 4^3 combinations = 64 triplets
- 20 common amino acids
- If the genetic code is not degenerate: there is 44 nonsense amino acids
- The genetic code must be degenerate
- "how many triplets code amino-acids and how many have other functions we are unable to say"

Summary

- The genetic code is of the following general type:
- A group of three bases (or, less likely, a multiple of three bases), codes one amino acid
- The code is non-overlapping
- Sequence of bases is read from a fixed point
- The code is probably degenerate

"the coding problem is wide open for experimental attack, and in fact many laboratories, including our own, are already working on the problem"

		U	С	А	G		
First letter	U	UUU UUC UUA UUG } Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA UGG Trp	U C A G	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAA CAG GIn	CGU CGC CGA CGG	U C A G	Thiro
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU AGC AGA AGG Arg	U C A G	letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG Glu	GGU GGC GGA GGG	U C A G	

Second letter

Marshall Nirenberg J. Heinrich Matthaei

Har Gobind Khorana

University of Wisconsin, Madison Mastered synthesis of RNA

CHARACTERISTICS AND COMPOSITION OF RNA CODING UNITS* By J. Heinrich Matthaei,† Oliver W. Jones, Robert G. Martin, and Marshall W. Nirenberg

NATIONAL INSTITUTE OF ARTHRITIS AND METABOLIC DISEASES, BETHESDA

Communicated by Richard Roberts, February 27, 1962

			14				
AMINO ACID INCORPORATION INTO PROTEIN STIMULATED BY RANDOMLY MIXED POLYNUCLEOTIDES							
Polynucleotide Base-ratio	UA = 0.87 $A = 0.13$	UC U = 0.39 C = 0.61	UG U = 0.76 G = 0.24	UAC U = 0.834 A = 0.050 C = 0.116	$UGC \\ U = 0.341 \\ G = 0.152 \\ C = 0.502$	UGA U = 0.675 G = 0.291 A = 0.034	Composition of coding units*
Probability of triplet relative to phenylalanine (UUU) = 100%	UUU—100 UUA— 13 UAA— 2.2 AAA— 0.3	UUU—100 UUC—157 UCC—244 CCC—382	UUU100 UUG 32 UGG 10.6 GGG 3.4	UUU-100 UUA- 6.0 UAA- 0.4 AAA- 0.02 UUC- 13.9 UCC- 1.9 CCC- 0.3 UAC- 0.8 AAC- 0.05 ACC- 0.12	UUU-100 UUG-46.2 UGG-21.0 GGG-1.0 UUC-147 UCC-218 CCC-322 UGC-68.1 GGC-31.7 GCC-101	UUU—100 UUG— 43 UGG— 19 GGG— 8.1 UUA— 5.1 UAA— 0.26 AAA— 0.01 UGA— 2.2 GGA— 0.1 GAA— 0.01	
Amino Acid Phenylalanine	100	100	100	100	100	100	UUU
Arginine	0	0	1.1	0	49.3	2.9	\mathbf{UCG}
Alanine	1.9	0	0	1.0	40.4	0.9	UCG
Serine	0.4	160	3.2	3.6	170	2.3	UUC + UCG
Proline	0	$\overline{285}$	0	0	188	0	UCC
Tyrosine	13		0	8	1.0	8.6	\mathbf{UUA}
Isoleucine	$\overline{12}$	1.0	1.0	4.8	5.4	8.4	\mathbf{UUA}
Valine	0.6	0	37	0.4	29.8	75	UUG
Leucine	4.9	79	36	5.1	157		UUC + UUG
Cysteine	4.9	0	35	0	5.4	46	UUG or UGG
Tryptophan	1.1	0	14	0	1.6	23	UGG
Glycine	4.7	0	12	0.5	9.7	15	UGG
Methionine	0.6	0	0	0.6	1.5	8	UGA
Glutamic acid Lysine	1.5	0	0	1.2	0.44	6.2	UGA UAA(?)

TABLE 3

1968 Nobel Prize for Deciphering the Genetic Code

Marshall Nirenberg

Robert Holley

Har Gobind Khorana

11 August 1967, Volume 157, Number 3789

Will Society Be Prepared?

"Science has reached a new frontier. A revolution far greater... then the atomic or hydrogen bomb"

- New York Times, 1961

"might lead to methods of tampering with life, of creating new diseases, of controlling minds, of influencing heredity, even perhaps in certain desired directions."

- Arne Tiselius, Nobel Laureate in Chemistry

Thank you!