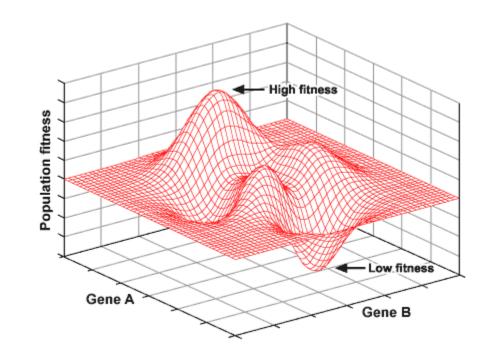
Motoo Kimura

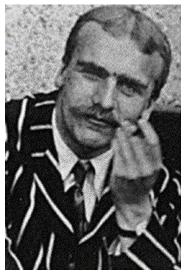

Aaron Flynn Methods and Logic March 3, 2015

Neo-Darwinism

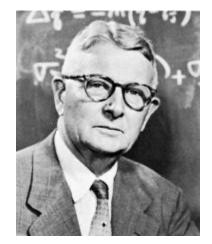
- Darwin proposed evolution occurs primarily by natural selection
- He did write "Variations neither useful nor injurious would not be affected by natural selection, and would be left a fluctuating element"

Theoretical Population Genetics and the Modern Evolutionary Synthesis

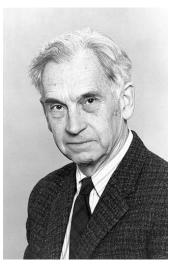
- Combined Darwinian evolution through natural selection with Mendelian heredity
- Important figures: R.A. Fisher, J.B.S. Haldane, Sewall Wright


R.A. Fisher

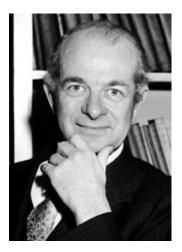
- Proposed the fundamental theorem of natural selection
- Coined the term "null hypothesis"
- Developed ANOVA, Fisher's exact test


J.B.S. Haldane

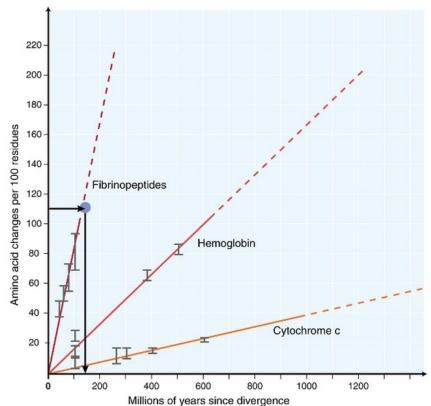
- Known for primordial soup theory and malaria hypothesis, also conceptualized in vitro fertilization and hydrogen economy
- First to demonstrate genetic linkage in mammals, first human genetic mapping
- Investigated blood acidification by drinking HCl, sealing himself in decompression chamber at 7% CO₂
- Coined many biological terms including cis, trans, coupling, repulsion, clone
- Estimated 2x10⁻⁵ mutations per gene per generation for hemophilia


Sewall Wright

- Hypothesized genetic drift and fitness landscapes
- As a first grader knew how to extract cube roots
- Disagreement with R.A. Fisher over fitness landscapes


Ernst Mayr

- Proposed biological species concept: a species is defined as members of populations that actually or potentially interbreed
- Developed peripatric speciation theory to explain evolution
- Did not think the gene was a target of selection, and disagreed with mathematical approaches to genes and was a critic of Haldane, Woese


Linus Pauling

- Nobel prize in Chemistry and Nobel Peace prize
- Introduced ideas of electronegativity, orbital hybridization, resonance
- Discovered alpha helix and beta sheet, hemoglobin modification in sickle cell anemia; proposed triple helix structure of DNA

Molecular Clock Hypothesis

- Important figures: Emile Zuckerkandl, Linus Pauling, Emanuel Margoliash
- Amino acid residues in a protein and DNA bases in a genome change through spontaneous mutation at a constant rate
- Can estimate how long ago two species diverged from a common ancestor based on DNA or protein differences

Molecular Clock Hypothesis

- 1962: Emile Zuckerkandl and Linus Pauling use electrophoresis and paper chromatography on homologous proteins, notice amino acid differences in hemoglobin between vertebrates changes linearly with time when measured against fossil evidence
- 1963: Emanuel Margoliash proposes genetic equidistance hypothesis, that the number of residue differences between cytochrome c of two species is proportional to the time since the last common ancestor
- 1967: Kimura uses the molecular clock hypothesis to calculate the evolutionary rate of the entire genome of different species

Motoo Kimura:

- Born November 13, 1924
- Optimistic, outspoken, eccentric
- Interested in botany and mathematics from a young age
- Entered botany program after high school to avoid military duty during WWII
- Brought population genetics to Japan
- Diagnosed with ALS in 1993
- Died from a fall on November 13, 1994

Kimura's scientific career

- Inspired to do population genetics by Sewall Wright's 1931 paper 'Evolution in Mendelian populations'
- Japanese biologists did not understand his work, thought it was too mathematical
- He received a PhD from University of Wisconsin in 1956, also sent his dissertation to Kyoto University and it was rejected for being too mathematical in nature

Neutral theory of molecular evolution

- Neo-Darwinism became popular in the 1940s-60s, which said natural selection is more important than mutations
- Neutral theory says most mutations are neutral, fate of mutations determined by random genetic drift
- Theory: Genetic variation accounts for a large fraction of observed genetic diversity
 - Genetic variation that does not result in fitness difference means selection cannot directly affect the frequency of the variation. Genetic variation at those sites will be higher.
- Purifying selection (removal of deleterious mutations) is common
- Positive selection (increased offspring from good mutations) is rare

Evolutionary Rate at the Molecular Level *Nature* (1968)

• Abstract: "Calculating the rate of evolution in terms of nucleotide substitutions seems to give a value so high that many of the mutations involved must be neutral ones."

Average time for one amino acid replacement in peptide

- Comparing paralogs:
 - Hemoglobin between mammals: one amino acid change per 10,000,000 years per 100 amino acids
 - Mammalian versus avian cytochrome c: one amino acid change per 45,000,000 years per 100 amino acids
 - Triosephosphate dehydrogenase between mammals: one amino acid change per 30,000,000 years per 100 amino acids
 - Average: One amino acid change per 28,000,000 years for a 100 amino acidlength peptide
 - Is 28×10^6 years per amino acid substitution low?

Average time for one base pair replacement in genome

• Assumptions:

- Size of haploid genome: 4×10^9 bases
- 100 amino acid-peptide corresponds to 300 nucleotide pairs in a genome
- 20 percent of nucleotide replacement caused by mutation is synonymous
- One amino acid replacement corresponds to 1.2 base pair replacements. Average time for one base pair replacement

•
$$28 \times 10^6 yr \div \left(\frac{4 \times 10^9}{300}\right) \div 1.2 = 1.8 yr$$

Average time for one base pair replacement in genome

- Assuming mainly nucleotide substitution (mammalian genomes, similar size, similar GC content)
- Accounting for size of codon, synonymous mutations, average time for a base pair replacement in mammalian genome is 1.8 years
- But...Haldane (1957) estimated allele substitution occurred on average once every 300 generations
- No mammalian species should be able to tolerate new alleles once every 2 years

What happens with nearly neutral mutations?

- *N_e*: effective population size
- s: selective advantage of new allele of pre-existing alleles
- *p*: frequency of new allele at start
- $|2N_es| \ll 1$
- Load:
 - $L(p) = 4N_e s \log_e(1/p)$
 - tells us that for a nearly neutral mutation, the substitutional load can be very low and there will be no limit to the rate of gene substitution in evolution
- Probability of fixation:
 - $u(p) = p + 2N_e sp(1-p)$
 - tells us that the probability of fixation is roughly equal to initial frequency

What happens with nearly neutral mutations?

- Conclusion: New alleles may be produced at the same rate per individual as they are substituted in the population
- Neutral (or nearly neutral) mutations are occurring at the rate of roughly 0.5 per year per gamete
- Assuming average mammalian generation is 4 years, the mutation rate per generation for neutral mutations is 2 per gamete, 4 per zygote or $\frac{2}{4 \times 10^9} = 5 \times 10^{-10}$ per nucleotide pair per generation

Drosophila

- Esterase-5 MW 10⁵ kDa, approximately 1000 amino acids or 3000 nucleotide pairs. Mutation rate would be:
 - $u = (3 \times 10^3) \times (5 \times 10^{-10}) = 1.5 \times 10^{-6}$ per generation
- Drosophila may have 10 times higher mutation rates, which would indicate 1.5×10^{-5} mutations per generation
- Assuming 1 neutral mutation per genome per generation, the mutation rate per nucleotide pair per generation in *Drosophila* is $\frac{1}{2 \times 10^8} = 5 \times 10^{-9}$ which corresponds to 1.5×10^{-5} mutations per generation for 3000 nucleotide pairs

Phage

- According to Watson (1965), phage T_4 rIIA gene has DNA replication error rate of $10^{-8} \sim 10^{-9}$ per base
- Humans have approximately 50 cell divisions from fertilized egg to gamete and 4x10⁹ bases per genome
- $(10^{-8} \sim 10^{-9}) \times 50 \times (4 \times 10^{9}) = 200 \sim 2000$ mutations
- Conclusion: "This is 100-1000 times larger than the estimate of 2 per generation and suggests that the mutation rate per nucleotide pair is reduced during evolution by natural selection"

Concluding paragraph

- There are many more mutations occurring each generation than previously believed
- These mutations have almost no influence on fitness
- Random genetic drift alters the gene pool of populations
- Random sampling of gametes due to finite population number alters ultimate fate of gene pool
- Mutation is the driving force of evolution at both the genic and phenotypic levels

Concluding paragraph

 "To emphasize the founder principle but deny the importance of random genetic drift due to finite population number is, in my opinion, rather similar to assuming a great flood to explain the formation of deep valleys but rejecting a gradual but long lasting process of erosion by water as insufficient to produce such a result."

Controversy

- Neo-Darwinism was dominant in biology
- Kimura paper published in Nature, same conclusion published by King and Jukes in Science in 1969 later with the title "non-Darwinian evolution"
- Kimura did not realize his theory would challenge 'selectionism'
- Evolutionary biologists like Ernst Mayr did not think the gene was a target of selection, and disagreed with mathematical approaches to genes

Conclusions

- Evolutionary changes of proteins are due to neutral mutations and genetic drift rather than natural selection
- More evidence for molecular evolution

Sources

- Steen, TY. Always an eccentric?: a brief biography of Motoo Kimura. *J. Genet.*, Vol. 75, Number 1, April 1996, pp. 19-25.
- Yates, F., & Mather, K. (1963). Ronald Aylmer Fisher 1890-1962. *Biographical memoirs of fellows of the Royal Society of London*, 9, 91-120.
- Pirie, N. W. (1966). John Burdon Sanderson Haldane 1892-1964. *Biographical memoirs of fellows of the Royal Society of London, 12, 218-249.*
- Crow, JF. Mayr, mathematics and the study of evolution. *J. Biol.*, Vol. 8, Number 13, 23 February 2009.
- Nei M. Selectionism and Neutralism in Molecular Evolution. *Mol. Biol. Evol.*, Vol. 22, Issue 12, December 2005, pp. 2318-2342.
- King, J. L., & Jukes, T. H. (1969). Non-darwinian evolution. *Science*, *164*(3881), 788-798.
- Crow, J. F. (1988). Sewall Wright (1889-1988). *Genetics*, 119(1), 1.
- Kumar, S. (2005). Molecular clocks: four decades of evolution. *Nature Reviews Genetics*, 6(8), 654-662.