A CORRELATION OF CYTOLOGICAL AND GENETICAL CROSS-ING-OVER IN ZEA MAYS

BY HARRIET B. CREIGHTON AND BARBARA MCCLINTOCK

BOTANY DEPARTMENT, CORNELL UNIVERSITY

Communicated July 7, 1931

Methods & Logic 4.2.15

Interference

- Double strand breaks occur frequently and regularly, only a few repair by crossing-over
- Cross-over assurance- at least one cross-over event/chromosome
- Cross-over events regulated by # of DSB and mechanism of non-crossover repair

Barbara McClinock (1902-1992)

- 1923: Undergraduate at Cornell University
- 1927: PhD in Botany at Cornell University (Rollins Emerson)
- 1927-1931: Cornell University
- 1931-1933: National Research Counsel Fellowship at CalTech
- 1933-1934: received Guggenheim Fellowship to study in Germany
- 1934-1936: Cornell University
- 1936-1941: University of Missouri
- 1941-1967: Cold Spring Harbor
- 1957-1981: Traveled South America tracing the origin of races of maize

Courtesy of Cold Spring Harbor Laboratory Archives. Noncommercial, educational use only.

Barbara McClintock as a graduate student at Cornell, 1929. (L-R standing) Charles Burnham, Marcus Rhoades, Rollins Emerson, and Barbara McClintock. George Beadle is kneeling by the dog

Harriet B. Creighton (1909-2004)

- 1929 Undergraduate at Wellesley College
- 1933 PhD at Cornell University
- 1934-1940 Ass. Prof. at Connecticut College
- 1940-1974 Wellesley College

Maize-Zea Mays-Corn

Male: releases pollen

Female: Each kernel contains one egg

One silk grows from each kernel

One pollen will bind one silk and grow to the kernel and fertilize the egg

McClintock's Career Goal

• Create a map for the entire Maize genome

Identification of Maize Chromosomes

- McClintock took an assistant position under her advisor, a cytogenticist, where she learned many staining techniques
- Partnered with Dr. Randolph (cytogenetics and botanist) to investigate Maize chromosomes
 - Carmine Staining

- 1927: Randolph identified Maize has 10 chromosomes, but could not differentiate between the chromosomes
- 1929: McClintock published the ideogram of all 10 chromosomes

Maize cytogenetics

- 10 chromosomes
- Contain B chromosomes
 - Supernumerary or accessory chromosomes
 - Usually contain heterochromatin and are not essential for life
 - Required for Maize

Chromosome 9

- Second smallest chromosome
- Some strains of Maize contain a knob at the end of the short arm
- Used as an identification marker
- Passed on as if it were a gene
 - First physical evidence of chromosomes passing their material to their offspring

Anderson, et al. Genome Research. 2006

Interchange between two non-homologous chromosomes of *Zea Mays*

McClintock, PNAS 1930

A CORRELATION OF CYTOLOGICAL AND GENETICAL CROSS-ING-OVER IN ZEA MAYS

BY HARRIET B. CREIGHTON AND BARBARA MCCLINTOCK

BOTANY DEPARTMENT, CORNELL UNIVERSITY

Communicated July 7, 1931

Figure 1: Diagram of chromosome 9 types

- a-Knobbed, interchanged chromosome.
- b—Knobless, interchanged chromosome.
- c-Knobbed, normal chromosome.
- d—Knobless, normal chromosome.

Heterzygote will produce different gametes if a cross-over even occurs

Cultures A125 & 340

Percentage of Cross-overs

TABLE	1
-------	---

ENOBLESS-NORMAL	KNOBLESS-NORMAL, CULTURE 337 AND KNOBBED-NORMAL CULTURES A125 AND 340				
	PLANTS POSS NORMAL CHRO	PLANTS POSSESSING 2 NORMAL CHROMOSOMES		PLANTS POSSESSING AN INTERCILANGED CHROMOSOMES	
CULTURE	NON-CROSSOVERS	CROSSOVERS	NON-CROSSOVERS	 CROSSOVERS 	
337	8	3	6	2	
A125	39	31	36	23	
340	5	3	5	3	
Totals	52	37 .	47	28	

Cross-overs 37+28= 65	65
Total = 164	$\frac{1}{164} \times 100 = 39\%$

Traits on Chromosome 9

Letter	Dominant	Recessive
C,c	Colored aleurone	Colorless
Sh, sh	Wild type	Shrunken endosperm
Wx, wx	Wild type 75% amylopectin & 25% amylose	Waxy endosperm 100% amylopectin

Colored Aleurone

Shrunken Endosperm

Table 2

Close association between the knob, C and Wx

Correlation between cytological and genetic crossing-over

- Requires a plant that:
 - Is hetermorphic for the knob
 - Contains genes *c* and *wx*
 - Contains chromosome 8/9 interchange

	TABLE 3			
	KNOB-C-WX-INTERCHANGED × KNOBLESS-c-WX-NORMAL			
	ENOBLESS-C-WI-NO PLANT NUMBER	KNOBBED OR KNOBLESS	C-WX-NORMAL INTERCHANGED OR	NORMAL
$(\sqrt{100})$	Class I, C-wx kernels			
Cytological clossing	1	Knob	Interchanged	
	2	Knob	Interchanged	
over occurs and is	3	Knob	Interchanged	
UVEL ULLUIS ALLUIS	Class II, c-wx kernels			
	1	Knobless	Interchanged	
accomponied by the	2	Knobless	Interchanged	
accompanied by the	Class III, C-Wx kernels			Pollen
	1	Knob	Normal	WxWx
	2	Knob N.	Normal	W.W.
expected types of	0 E	Kach	Normal	WXWX
	5	Knob	Normai	
	7	Knob	Normal	
anatic crossing_over	8	Knob	Normal	
genetic crossing-over	Class IV. c-Wx kernels	2211010		
6	1	Knobless	Normal	Wxwx
	2	Knobless	Normal	Wxwx
	3	Knobless	Interchanged	Wxwx
	4	Knobless	Normal	Wxwx
	5	Knobless	Interchanged	WxWx
	6	Knobless	Normal	WxWx
e Wa	7	Knobless	Interchanged	Wxwx
	8	Knobless	Interchanged	WxWx
	9	Knobless	Normal	WxWx
(we	10	Knobless	Normal	WxWx
	11	Knobless	Normal	Wxwx
	12	Knobless	Normal	w xwx
	10	Knobless	Normal	WxWx
	15	Knobless	Normal	Wr-
	10	TEHODIC35	1 CI IIIGI	11 A

But that's not all....

Transposable Elements (TEs)

- McClintock discovered the transposons Dissociator (Ds) and Activator(Ac) in 1951
- Was not accepted by other scientists because it was not completely understood
- Others thought it was specific to corn
- In the late 1960's and early 1970's, TEs were discovered in bacteria, yeast and bacteriophages

Nobel Prize in Physiology or Medicine (1983)

- Discovery of mobile genetic elements
- First woman to win the prize unshared
- Understood epigenetics 40 years before it was described

"[T]he progeny of two (such) sister cells are not alike with respect to the types of gene alteration that will occur. Differential mitoses also produce the alterations that allow particular genes to be reactive. Other genes, although present, may remain inactive. This inactivity or suppression is considered to occur because the genes are 'covered' by other nongenic chromatin materials. Gene activity may be possible only when a physical change in this covering material allows the reactive components of the gene to be 'exposed' and thus capable of functioning."

-McClintock, 1951

Cytogenetics

- 1878-1882
 - <u>Walther Flemming</u> used a basophilic dye and found it stained 'chromatin' located in the nucleus
 - Studied 'mitosis' and the distribution of chromosomes to the daughter nuclei
 - To early to make the connection with Mendel's work
- 1904
 - <u>Gustav Giemsa</u> developed the Giemsa Dye- Results in a dark and light patterning called G-banding
 - Euchromatin: less affinity \rightarrow lighter stain
 - Heterchromatin: dense chromatin \rightarrow darker stain