Mutations affecting segment number and polarity in *Drosophila*

Christiane Nüsslein-Volhard and Eric Wieschaus *Nature* (1980)

Christiane Nüsslein-Volhard

- Born October 20, 1942 in Magdeburg Germany
- Bachelors in Biology, Chemistry and Physics from Johann-Wolfgang-Goethe-University in 1964. Degree in biochemistry (1968) and a PhD in biology and genetics in 1973 from Eberhard-Karl University in Tubingen
- Post-doc in Basel and Freiburg
- Became a group leader at the European Molecular Biology Laboratory (Heidelberg, Germany) in 1978
- Moved to the Max Planck Institute in 1981, and became director of genetics from 1985-2014

Eric Wieschaus

- Born June 8, 1947 in South Bend, Indiana
- B.S. in Biology from Notre Dame (1969) and PhD in Biology from Yale (1974) while studying maternal effect genes
- Post-doc under Rolf Nöthiger in Zurich studying segmentation development in flies
 - Met Nüsslein-Volhard while in Zurich
- Moved with Nüsslein-Volhard to EMBL to collaborate in 1978
- After publication, moved to a faculty position at Princeton in 1981 where he remains today

Mutations affecting segment number and polarity in *Drosophila*

Christiane Nüsslein-Volhard & Eric Wieschaus

European Molecular Biology Laboratory, PO Box 10.2209, 69 Heidelberg, FRG

Genes already known to affect fly development

Genes affecting late development

Ubx abd-A

Saturation Mutagenesis

Wieschaus Nobel Lecture (1995)

Saturation Mutagenesis

Results of mutagenesis screens

Total lines established and tested	26978	
Lethal mutations	18136	
Mutations causing embryonic lethality	4332	
Mutations causing embryonic phenotypes	580	
Complementation Groups (Genes)	139	

Lohs-Schardin et al. Devl. Biol. 1979

Defining Segments in Drosophila

Increasing complexity beyond A→P: Gap Genes

- Loss of function of gap genes results in deletions of entire, adjacent segments
- Krüppel (Kr) results in lack of thorax and anterior abdomen
- Knirps (kni) results in the loss of the anterior abdomen
- Hunchback results in the loss of meso- and metathoracic segments

Hunchback: Thoracic identity

Note normal development of the abdominal sections

Krüppel: Thoracic and anterior abdominal identity

Arrows indicate a reversal in polarity

Knirps: Anterior abdomen determination

What does the expression of gap genes look like in the developing embryo?

- Hunchback defines thorax
- Kruppel defines thorax and anterior abdomen
- Knirps defines anterior abdomen

Gilbert (2003)

Defining Segments in Drosophila

Increasing complexity to 12 segments: Pair-rule genes

- Engrailed was provided by Thomas Kornberg at UCSF
- Even-skipped
- Odd-skipped
- Paired
- Runt
- Barrel

Even-Skipped: Defining the T1, T3, A2, A4, A6, A8

Defines the denticle band and naked cuticle of even numbered segments

Odd-skipped: the determination of the rest of the segments

Connecting the spaces between segments: Paired and runt

Overlaps in determination of segments: Segments of the fly are not isolated units

Connecting the spaces between segments: Paired and runt

What does the expression of pairrule genes look like?

Defining Segments in Drosophila

Defining segment polarity

- Gooseberry
- Hedgehog
- Patch
- Wingless was provided by Gary Struhl at Columbia University

Segment Polarity Genes: Gooseberry

Segment number is retained, but there is a loss of naked cuticle and a duplication of denticle band

Hedgehog: very similar to gooseberry

Almost a complete loss of segment identity

Patch: duplication of number of segments

What is the pattern of segment polarity genes?

Wingless (green) and Engrailed (red)

Segment polarity genes

In Summary, this is a lot of work for one table

Table 1 Loci affecting segmentation in Drosophila				
Class	Locus	Map position*	No. of alleles†	Ref.
Segment- polarity	cubitus interruptus ^D (cl ^D)	4-0	. (2)	20
	wingless (wg)	2-30	6	9
	200seberry (gsb)	2-104	1	This work
	hedgehog (hh)	3-90	2	This work
	fused (fu)‡	1-59.5	(9)	8, 20
	patch (pat)	2-55	8	This work
Pair-rule	paired (prd)	2-45	3	This work
	even-skipped (eve)	2-55	2	This work
	odd-skipped (odd)	2-8	2	This work
	barrel (brr)	3-27	2	This work
	runt (run)	1-65	1	This work
	engrailed (en)	2-62	6	11, 20
Gap	Krüppel (Kr)	2-107.6	- 6	12, 20
	knirps (knl)	3-47	5	This work
	hunchback (hb)	3-48	1	This work

Drosophila embryogenesis

