### Moc/Bio and Nano/Micro Lee and Stowell

Biotemplating

Choice of biomaterial Lipid, protein, nucleic acid Methods of deposition Chemical, photochemical Methods of optimization Altering the reaction conditions or the biomaterial



## Using bio templates for materials fabrication

- Identify a biomaterial with a desired pattern
- Determine conditions for materials deposition
  - Chemical or photochemical
- Optimize materials formation either chemically or biologically
  - Mutation of biomaterial
  - Optimization of the chemical process

### **Chemical processes**

- Photopolymerization (primarily organic)
  - Light initiated
  - Fast and more easily controlled
  - Clean
- Chemical polymerization (primarily organic)
  - Harder to control
  - Slow
- Mineralization (inorganic)
  - Biomineralization of calcium phosphates, magnetite
  - Slow not well understood or controllable
- Electrochemical (metals)
  - Catalysts assisted metal deposition
  - Somewhat controllable via catalyst doping



#### **Photochemical polymerization**





(orgreana)

Condensation Polymerization.





#### **Chemical polymerization**



### **Chemical polymerization**





#### **Electrochemical deposition**

Activation:  $Pd^{2+} \rightarrow Pd^{2+}_{ads}$  [and  $Pd^{2+} + 2 e^- \rightarrow Pd$ ] Deposition:  $3Ni^{2+} + (CH_3)_2NHBH_3 + 3H_2O \rightarrow$  $3Ni + B(OH)_3 + (CH_3)_2NH_2^+ + 5H^+$ 



- Template mineralization or photochemical polymerization on lipid structures. Archibald, D.D. and S. Mann, *Template mineralization of self-assembled anisotropic lipid microstructures*. Nature, 1993. **364**: p. 430-433. Evans, E., et al., *Biomembrane Templates for Nanoscale Conduits and Networks*. Science, 1996. **273**: p. 933-935.
- Bacterial fibres. Davis, S.A., et al., Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997. 385: p. 420-423
- Methods for DNA driven nanocrystal organization. Livisatos, A.P., et al., *Organization of 'nanocrystal molecules' using DNA*. Nature, 1996. **382**: p. 609-611 ; Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic & James J. Storhoff DNA-based method for rationally assembling nanoparticles into macroscopic materials Nature 1996, 382, p 607
- S-layer templates for nanoparticle fabrication. Sleytr, U. B. et al. Applications of S-layers. *FEMS Microbiol Rev* 20, 151-75 (1997).
- Two-dimensional array fabrication using ferritin. Yamashita, I., fabrication of two-dimensional array of nano-particles using ferritin molecule. Thin solid films, 2001. **393**: p. 12-18.
- Chemoselective Templates from TMV. 1. Demir, M. & Stowell, M. H. B. A chemoselective biomolecular template for assembling diverse nanotubular materials. *Nanotechnology* **13**, 541-544. (2002). Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires Mato Knez et al Nanoletters 2003 Vol. 3, No. 8 1079-1082
- Bacterial Phage virus. Mao, C. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. *Science* **303**, 213-7 (2004).
- **3D DNA templates.** Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase singlestranded DNA that folds into a nanoscale octahedron. *Nature* **427**, 618-21 (2004).

### Lipid templates

- Recall lipids and their many phases
  - Cubic, hexagonal, etc
- Use stable lipid phases as a template
- Polymerization or mineralization







#### **Cerebrosides (tube forming)**





#### Iron oxide deposition



Various forms of Fe oxide were produced

#### **Bacterial Fibres**

- What are they
  - Like drawn nylon from polymerizing solutions
- How to use them as a template
  - Actually using the interstices between the bacterium



### Silicate formation at the interstices





### After pyrolysis to remove organic matter





#### **2D-DNA templates**

- Linear arrays can be made using gold particles
- 2D arrays possible



#### **Control of size and spacing**

#### Distance

Size



#### **Bacterial S-layers**

- Outer surface protein layer of bacteria
- Highly regular ordered 2D array







#### **Mineralization using CdS**



## Can also use to pattern and assemble other protein layers



## Lithographic methods for nano to micro scale patterning



blank exposure with KrF (248nm)









## Ferritin and other spherical cages for nanodot formation





#### http://www.ncbi.nlm.nih.gov/ICTVdb/





#### **Single Nanodot arrays**





### Array of 5nm quantum dots from ferritin



### Designing a self assembled single electron transistor (SASET)



7nm gate and 4 nm interconnects

### Designing a self assembled single electron transistor (SASET)

- Nanodots
- Nanowires
- Self assembly

#### Ferritin





#### **Biomineralization**







#### **TEM following mineralization**



# Designing a self assembled single electron transistor (SASET)

- Nanodots
- Nanowires
- Self assembly



### Strategy for wires

- Prototypical tobamovirus
- 18nm diameter 300nm length
- ~2100 identical protein monomers
- 17.5 kD coat protein monomer
- Very stable to a variety of conditions
- Genetically accessible
- Structure of monomer available



#### Genetic modification TMV to achieve a chemoselective template.



- The three potential external labeling positions
  - N-terminus
  - C-terminus
  - 63-66 loop
- Conversion of Threonine to Lysine



#### N-Hydroxy-Succinamide

- Facile
- Specific primary amine reactive
- Inexpensive
- Mild and biocompatible products
- Variety of solvent conditions
  - Aqueous or nonaqueous






# **Mutagenesis and expression**

- Subcloned coat coding region
- PCR mutagenesis
- Re-ligate back mutated fragment
- Transcription and plant dusting







# **Quantification of labeling**



•Quantitative labeling of mutant TMV (mTMV) 106+/- 12% No labeling of native TMV (nTMV)

# **Fluorescent labeling**



EM

### Confocal





### Ordered assembly of avidin on biotin TMV

**Biotin labeled** 



#### +Avidin



Computed diffraction pattern from avidin treated biotin labeled TMV



### +Avidin





### Metal coating via in situ photoreduction





## **Metal coated TMV**



## -hv









## **Tobacco Mosaic Virus**

- Prototypical tobamovirus
- 18nm diameter 300nm length
- ~2100 identical protein monomers
- 17.5 kD coat protein monomer
- Very stable to a variety of conditions
- Genetically accessible
- Structure of monomer available
- Internal diameter ~4nm



# Can we apply a similar strategy for labeling the interior of TMV (4nm)

### **2** internal Threonines



# Repeat the similar mutation strategy for internal Threonines



Mass difference 27.1



# **Confirmed by MALDI-TOF**

#### Native expect 17529 Mutant expect 17566





# 3nm wires on the inside of TMV

b a

Activation:  $Pd^{2+} \rightarrow Pd^{2+}_{ads}$  [and  $Pd^{2+} + 2 e^- \rightarrow Pd$ ] Deposition:  $3Ni^{2+} + (CH_3)_2NHBH_3 + 3H_2O \rightarrow$  $3Ni + B(OH)_3 + (CH_3)_2NH_2^+ + 5H^+$  **Designing a self assembled single electron transistor (SASET)** 



- Nanodots
- Nanowires
- Self assembly

# Strategy



- Use SELEX to determine RNAs with high affinity to Ferritin
- Introduce such sequences into TMV RNA
- Test directed assembly

# **SELEX** Systematic Evolution of Ligands by EXponential enrichment" (Tuerk and Gold, 1990)



10 random positions and 4 possible bases  $4^{10}$  or >  $10^{6}$  different sequences



## **Panning and selection**







## **Assembly of virus**



# Use of ferritin symmetry sites (432)







#### genIII protein, 42609 Da

- 📂 🛛 genVI protein, 12350 Da
- 🛛 🛛 genVIII protein, 5240 Da

- 🍉 🛛 genIX protein, 3650 Da
- genVII protein, 3600 Da
- ssDNA, 6408 bp

# Mutations based on peptides selected to bind materials



## Phage M13





## **Nanowires after annealing**







## **3D-DNA templates.**



Chen, J. H. & Seeman, N. C. Synthesis from DNAof a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. *Nature* 427, 618-21 (2004).{Shih, 2004 #849}



## **DNA surface nanostructures**





Lui et al Nanolet 2002, Vol 2, 863

# Virus templates for Gold Cell Sensors



- Introduce gold particles in to viruses
- Infect cells with the virus and perform raman imaging of the cell
  - ~30nm resolution
  - Image cellular conditions
    - pH
    - Metabolites
    - etc

http://www.indiana.edu/~bdlab/



# **Addition of gold particles**





Dissociate viral shell proteins at low pH and then reassemble in the presence of 5 nm gold particles

#### LOOKING INSIDE A CELL

A gold nanoparticle is introduced into a plant virus, which infects a living cell. As green laser light hits the gold, it scatters and gives a snapshot of the cell's internal chemistry

| Green laser beam                                                               |  |
|--------------------------------------------------------------------------------|--|
| Nucleus                                                                        |  |
| Virus                                                                          |  |
| Gold nanoparticle                                                              |  |
| Chemical environment revealed<br>by telltale frequencies in<br>scattered light |  |



# High resolution IR imaging of cell interior





### Chaperonins as nanodot depots Protein Folding in vivo;

involvement of Chaperonins





#### Two families of molecular chaperones.

The hsp70 proteins act early, recognizing small patches on a protein's surface. The hsp60-like proteins appear to act later and form a container into which proteins that have still failed to fold are transferred. In both cases repeated cycles of ATP hydrolysis by the hsp proteins contribute to a cycle of binding and release of the client protein that helps this protein to fold.

#### Ishi et al, Nature 2003, Vol 423, 628

## **Some dimensions**







# **Uptake of CdS particles**



# Demonstration of complete release of the CdS particles



Size exclusion chromatography, UV:protein F:CdS.

# EM analysis in absence and presence of ATP

#### Without ATP

#### With ATP



CdS qdot

## A piconewton force meter



Hess et al , Nanolet, 2002, Vol 2 , 1113.

Tool for measuring pN to nN forces.




## Conclusions



•Biological systems offer a direct route into highly ordered well defined templates for nanomolecular assembly.

- •Many such systems can be genetically altered to optimize a variety of desired properties
- •Can be used for nanoscale pattering and enhanced lithography
- •Such system open the way for highly efficient, inexpensive self assembled systems for materials fabrication at the nanoscale.