Readings

- http://www.ncbi.nlm.nih.gov/books/bv.fcgi?highlight=thermodyn amics\&rid=stryer.section.156\#167
- http://www.ncbi.nIm.nih.gov/books/bv.fcgi?highlight=stability,pr otein\&rid=stryer.section.365\#371
- http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection \&rid=stryer.section. 1687
- http://employees.csbsju.edu/hjakubowski/classes/ch331/protstructure/ mechdynam2.htm|

Moc/Bio and Nano/Micro Lee and Stowell

Moc/Bio-Lecture 2

Bit O'review

Thermodynamics of Biomolecules
DNA
RNA
Proteins
Lipids

Biology obeys all the laws of thermodynamics

- 1) Energy is Neither Created or Destroyed
- 2) In a closed system the potential energy always decreases (entropy)

Activation energy

reaction pathway

Performing useful work

kinetic energy transformed into heat energy only

part of the kinetic energy is used to lift a bucket of water, and a correspondingly smaller amount is transformed into heat

the potential kinetic energy stored in the elevated bucket of water' can be used to drive a wide variety of different hydraulic machines

The currency of the Cell

Nanomolecular Trains

::: 0900 000 00

Kinesin
Step size 8 nm

Nanomolecular rotors

Song et al Science 290, 1554, 2000.

The order of the cell requires energy

- DNA/RNA synthesis
- Protein synthesis
- Lipid formation (membranes)
- etc

Stability and Thermo of Biomolecules

- DNA
- H-bonding
- Pi-stacking
- Tm's calculated from thermo parameters
- $T_{m}=\Delta H /\left(\Delta S+R \ln C_{t}\right)$
- $R=1.987 \mathrm{eu}$
- $\Delta \mathrm{H}$ in cal $/ \mathrm{mol}$
- C_{t} is total molar strand concentration

DNA energetics

Delta H
(kcal/mol)

Delta S (eu)

Delta G
(kcal/mol)

Neighbor Seq

AA/TT	-8.4	-23.6	-1.02
AT/TA	-6.5	-18.8	-0.73
TA/AT	-6.3	-18.5	-0.60
CA/GT	-7.4	-19.3	-1.38
GT/CA	-8.6	-23.0	-1.43
CT/GA	-6.1	-16.1	-1.16
GA/CT	-7.7	-20.3	-1.46
CG/GC	-10.1	-25.5	-2.09
GC/CG	-11.1	-28.4	-2.28
GG/CC	-6.7	-15.6	-1.77

Example

5'-G-C-T-A-G-C
3'-C-G-A-T-C-G

- $\Delta \mathrm{G}_{\mathrm{t}}=2 \Delta \mathrm{G}(\mathrm{GC} / \mathrm{CG})+2 \Delta \mathrm{G}(\mathrm{CT} / \mathrm{GA})+\Delta \mathrm{G}(\mathrm{TA} / \mathrm{AT})$
- $\Delta \mathrm{H}_{\mathrm{t}}=2 \Delta \mathrm{H}(\mathrm{GC} / \mathrm{CG})+2 \Delta \mathrm{H}(\mathrm{CT} / \mathrm{GA})+\Delta \mathrm{H}(\mathrm{TA} / \mathrm{AT})$
- $\Delta \mathrm{S}_{\mathrm{t}}=2 \Delta \mathrm{~S}(\mathrm{GC} / \mathrm{CG})+2 \Delta \mathrm{~S}(\mathrm{CT} / \mathrm{GA})+\Delta \mathrm{S}(\mathrm{TA} / \mathrm{AT})$
- $\mathrm{T}_{\mathrm{m}}=\Delta \mathrm{H}_{\mathrm{t}} /\left(\Delta \mathrm{S}_{\mathrm{t}}+\mathrm{RInC}_{\mathrm{t}}\right)$

DNA summary

- Highly specific base pairing
- Nearest neighbor effects only
- GC content governs melting temp

WORKSHOP MocBio Lecture 2 - MHBS

We learned that the melting temperature of DNA depends on the base content and nearest neighbor effects. What types of forces are responsible for changes due to base content and changes due to neighbor effects?

Figure 4-5. Molecular Biology of the Cell, 4th Edition.

Example: SNP analysis

Single nucleotide polymorphisms

Looking for mutations that correlate with disease
A) Oligonucleotides with flurophores that FRET (fluorescence resonance energy transfer

Figure 4A: Hybridization-Probe fluorescent emission by FREI.

Figure 4: Melting curve analysis using Hybridization Probes.

- homozygous wild-type sample
- homozygous mutant sample
- heterozygous sample

Example: Gold nanoparticle assembly

Protein structure and stability

00 090 000 00 000

Peptide bond again

Figure 3-1. Molecular Biology of the Cell, 4th Edition.

Polypeptide

Figure 3-2 part 1 of 3. Molecular Biology of the Cell, 4th Edition.

And now what?

Figure 3-2 part 3 of 3 . Molecular Biology of the Cell, 4th Edition.

Timescales of interest

Motion	Time Scale - log(s)
bond vibration	-14 to -13
proton transfer	-12
hydrogen bonding	-12 to -11
elastic vibration of globular region	-12 to -11
sugar repuckering	-12 to -9
rotation of side chains at surface	-11 to -10
torsional vibration of buried group	-11 to -9
hinge bending at domain interfaces	-11 to -7
water structure reorganization	-8
helix breakdown/formation	-8 to -7
allosteric transitions	-5 to 0
local denaturation	-5 to 1
rotation of medium-sized interior sidechains	-4 to 0

The route to folded proteins

Figure 3-6. Molecular Biology of the Cell, 4th Edition.

Levinthal's paradox and others

- 100 amino acids
- 2 conformations for each AA
- 10^{30} possible conformations
- $10^{-13} \mathrm{sec}$ for conformational interconversion
- So $10^{17} \mathrm{sec}$ to sample all conformations
- $\sim 4 \times 10^{16}$ years (age of universe $\sim 10^{10}$ years)

Peptide bond

(A)

Figure 3-4. Molecular Biology of the Cell, 4th Edition.

Amino acid	α helix	β sheet	Turn
Ala	$\mathbf{1 . 2 9}$	0.90	0.78
Cys	$\mathbf{1 . 1 1}$	0.74	0.80
Leu	1.30	1.02	0.59
Met	1.47	0.97	0.39
Glu	$\mathbf{1 . 4 4}$	0.75	1.00
Gln	$\mathbf{1 . 2 7}$	0.80	0.97
His	$\mathbf{1 . 2 2}$	1.08	0.69
Lys	$\mathbf{1 . 2 3}$	0.77	0.96
Val	0.91	1.49	0.47
lle	0.97	1.45	0.51
Phe	1.07	1.32	0.58
Tyr	0.72	$\mathbf{1 . 2 5}$	1.05
Trp	0.99	1.14	0.75
Thr	0.82	1.21	1.03
Gly	0.56	0.92	$\mathbf{1 . 6 4}$
Ser	0.82	0.95	$\mathbf{1 . 3 3}$
Asp	1.04	0.72	$\mathbf{1 . 4 1}$
Asn	0.90	0.76	$\mathbf{1 . 2 8}$
Pro	0.52	0.64	$\mathbf{1 . 9 1}$
Arg	0.96	0.99	0.88

Intramolecular forces

Figure 3-5. Molecular Biology of the Cell, 4th Edition.

- Ionic interactions
- $\mathrm{F}=\left(\mathrm{q}_{1} \mathrm{a}_{2}\right) /\left(\mathrm{d}^{2} \varepsilon\right)$
- ε the dialectric (water 85)
- Weak in water <<-kcal/mol
- Van der Waales
- Lennard-Jones potential
- $\mathrm{F}=\mathrm{D}_{\mathrm{o}}\left[\left(\mathrm{R}_{\mathrm{eq}} / \mathrm{R}\right)^{12}-2\left(\mathrm{R}_{\mathrm{eq}} / \mathrm{R}\right)^{6}\right]$
- $1.3 \mathrm{kcal} / \mathrm{mol} / \mathrm{CH}_{2}$
- Hydrogen bond
- Vapor phase about -6 kcal/mol
- Water about -0.5 to $-1.5 \mathrm{kcal} / \mathrm{mol}$
- $F=D_{0}\left[5\left(R_{e q} / R\right)^{12}-6\left(R_{e q} / R\right)^{6}\right] \cos ^{2} D H A$

The hydrophobic effect

- Oil in water
- $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
- Enthalpy of transfer from oil to water is negligible
- Entropy is largely due to the ordering of water
- The main driving force in protein folding is entropic
- But see temperature dependence....

Protein summary

- H-bond, I-bonds marginal for overall stability
- Important for secondary conformations
- Van der Waals/ hydrophobic effect drive folding and stability
- Overall stability about $10-12 \mathrm{kcal} / \mathrm{mol}$
- Highly cooperative
- Sequence to fold prediction poor

Example: Temp Sensitive Enzyme

Half life at 100C

Native <0.5 min
Mutant 170 min

Thermolysin like protein

Lipids and membranes

Look familiar

- Ionic interactions
- $\mathrm{F}=\left(\mathrm{q}_{1} \mathrm{a}_{2}\right) /\left(\mathrm{d}^{2} \varepsilon\right)$
- ε the dialectric (water 85)
- Weak in water <<-kcal/mol
- Van der Waales
- Lennard-Jones potential
- $F=D_{0}\left[\left(R_{e q} / R\right)^{12}-2\left(R_{e q} / R\right)^{6}\right]$
- $1.3 \mathrm{kcal} / \mathrm{mol} / \mathrm{CH}_{2}$
- Hydrogen bond
- Vapor phase about -6 kcal/mol
- Water about -0.5 to $-1.5 \mathrm{kcal} / \mathrm{mol}$
- $F=D_{0}\left[5\left(R_{e q} / R\right)^{12}-6\left(R_{e q} / R\right)^{6}\right] \cos ^{2} D H A$

Lipid phases main effectors

- Water content
- Salt concentration
- Small organic molecules
- Temperature
- Nature of the lipid
- Head group
- Tail group

Phase diagram for CTAB

Savon
Détergents Lysophospholipides

PC, PS, PI, SM dicétyl phosphate DODAC

Cylindre

Bicouche

Hexagonal I (isotrope)

Lamellaire (cubique)

Hexagonal 2

PE, PA
Cholestérol Cardiolipine
Lipide A

Cône (base hydrophobe)

Micelles inverses

For each lipid remember the following

- Below the "melting" temp bilayers are rigid, tightly packed, and immobile
- Above they are flexible and mobile
- The transition temperature is a characteristic of the lipids
- The more pure the lipid system the sharper the transition.

Effect of cholesterol on phase

Biochemistry 2/e - Garrett \& Grisham

Garrett \& Grlsham: Blochemistry, 2/e
Figure 9.12

Examples: Lipid templates for ordered array assembly

a

b

C
d

Pitch (\AA)

Nanoparticle solution(I)

http://pubs.acs.org/cgi-bin/article.cgi/cmatex/2008/20/i03/pdf/cm701999m.pdf

Lipids summary

- Clear phase transitions
- Tm of phase transition is lipid dependent and environment dependent
- Tm is broadened by addition of other lipids

