- Ionic interactions
 - $F = (q_1 q_2)/(d^2 \epsilon)$
 - ε the dialectric (water 85)
 - Weak in water << -kcal/mol</p>
- Van der Waales
 - Lennard-Jones potential
 - $F = D_0[(R_{eq}/R)^{12} 2(R_{eq}/R)^6]$
 - 1.3 kcal/mol/CH₂
- Hydrogen bond
 - Vapor phase about -6 kcal/mol
 - Water about -0.5 to -1.5 kcal/mol
 - $F = D_0[5(R_{eq}/R)^{12} 6(R_{eq}/R)^6]\cos^2(DHA)$

L	K	M	F	P	S	т	W	Y	V	stop
Leu	Lvs	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val	ston
UUA UUG CUA CUC CUG CUU	AAA AAG	AUG	UUC UUU	CCA CCC CCG CCU	AGC AGU UCA UCC UCG UCU	ACA ACC ACG ACU	UGG	UAC UAU	GUA GUC GUG GUU	UAA UAG UGA
А	R	D	Ν	С	Е	٥	G	Н	1	
Ala	Arg	Asp	Asn	Cys	Glu	GIn	Gly	His	lle	
GCA GCC GCG GCU	AGA CGA CGC CGC CGU	GAC GAU	AAC AAU	UGC UGU	GAA GAG	CAA CAG	GGA GGC GGG GGU	CAC CAU	AUA AUC AUU	

Figure 6–50. Molecular Biology of the Cell, 4th Edition.

Pro CCA to GAC is 3 mutations but CCC to GAC is only 2 Mutations

PCR mutagenesis example 1

The ends of PCR products can be easily manipulated. For example we can add sites for restriction endonucleases, making it easier to clone the products

Target for amplification:

5'-GTTTAGAGACCTAGACTA	ATATTACGCGAGTAGCT-3'
3'-CAAATCTCTGGATCTGAT	TATAATGCGCTCATCGA-5'

Primers are designed with extra sequences at their 5' ends

The PCR product now has sites for **BamHI** and **EcoRI** at its ends

5'-GGATCCTAGACTA....ATATTACGCGAATTC-3' 3'-CCTAGGATCTGAT....TATAATGCGCTTAAG-5'

Background: SELEX isolates activities from vast pools of (10¹²-10¹⁵) randomized molecules

Peptide synthesis

- Understand coupling yields
- Example of 20 mer
 - 1. Starting with 2 micromole of beads
 - 2. coupling efficiency 97%

Yield = $2^{*}(.97)^{19} = 1.12$ micromoles