Moc/Bio and Nano/Micro Lee and Stowell

Moc/Bio-Lecture 7

Coordination of Biomolecular functions Gene regulation **DNA** level **RNA** level **Protein level** Intercellsignaling (first messengers) Signaling molecules Receptors Intracellsignaling (second messengers) CAMP **cGMP Phospholipids**

One genome many cell types

Biological outcome is under multilayered biochemical control

- Transcriptional control
 - DNA level
- Translational control
 - RNA level
- Post-translational (Activity) control
 - Protein level

Coordination of these controls

Figure 6–21 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

Transcriptional Control

- Key concepts
 - Regulates the number of mRNA molecules produced
 - Can be enhanced and suppressed
 - Encoded by the noncoding5' upstream region of the gene.

Basal transcription factors In response to injunctions from activators, these factors position RNA polymerase at the start of transcription and

initiate the transcription process.

Case study Lac operon

A protein-DNA feedback loop for carbohydrate consumption in bacteria

- 3 functional proteins under 1 promoter
 - Beta galactosidase(LacZ)
 - Transacetylase(Lac A)
 - Lactose permease(Lac Y)
- 1 Repressor protein constitutive expression
 - Binds operator (promoter region) blocks transcription

Lac Operon

laci promoter

Typische polycistronische Genstruktur am Beispiel lac-Operon von E. coli

Translational Control

- Translational stalling and transcription termination
- Trp operon
- RNA processing
 - Polyadenylation(mRNA lifetime)
 - Splicing and alternative splicing
 - Transport regulation
- RNA editing

Example Trp operon

Alternative splicing

Alternative splicing

576 isoforms

mRNA export regulation

(A) Cytoplasmic surface view

Cytoplasmic ring

Post-translational control

- Protein processing
 - Signal sequences (localization)
 - Preproteinsf olded but not biologically active
- Side chain modification
 - Ser, Thr, Tyrphosphorylation
 - Lysacetylation,ubiquitination
 - Cys, lipidation
 - Glu, methylation, carboxylation

Protein localization

Side chain modifications

Intercellular signalling

- First messengers
 - Hormones, peptide or otherwise
 - Nitric Oxide
 - Neurotransmitters
 - etc
- Receptors
 - GPCR's
 - Receptor Protein-tyrosine kinase
 - Ion channel receptors

Neurotransmission case study

Ion channels

Intracellular signaling

- Second messengers
 - cAMP
 - cGMP
 - Phospholipids
 - Ca++
 - Ras, Raf, MAP kinase

Case study chemotaxis

